1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
#+:eus
(progn
(defvar re (instantiate float-vector 1025))
(defvar im (instantiate float-vector 1025)))
#-:eus
(progn
(defvar re (make-array 1025 :element-type 'short-float))
(defvar im (make-array 1025 :element-type 'short-float))
(defmacro while (cond &rest body)
`(do ()
((not ,cond))
. ,body)))
(defun fft (areal aimag)
(let (ar ai i j k m n le le1 ip nv2 nm1 ur ui wr wi tr ti)
; (declare (type float ur ui wr wi tr ti)
; (type float-vector ar ai)
; (type fixnum i j m n ip nv2 nm1 le1))
;; initialize
(setq ar areal
ai aimag
n (length ar)
n (1- n)
nv2 (floor (/ n 2))
nm1 (1- n)
m 0
i 1)
(while (< i n) (setq m (1+ m) i (+ i i)))
(when (not (equal n (expt 2 m)))
(error "array size is not a power of 2"))
;; interchange elements in bit-reversal order
(setq j 1 i 1)
(while (< i n)
(when (< i j)
(setq tr (aref ar j) ti (aref ai j))
(setf (aref ar j) (aref ar i))
(setf (aref ai j) (aref ai i))
(setf (aref ar i) tr)
(setf (aref ai i) ti))
(setq k nv2)
(while (< k j)
(setq j (- j k) k (/ k 2)))
(setq j (+ j k) i (1+ i))
)
(format t "n=~d~%" n)
(do ((l 1 (1+ l)))
((> l m))
(setq le (expt 2 l)
le1 (floor (/ le 2))
ur 1.0
ui 0.0
wr (cos (/ pi (float le1)))
wi (sin (/ pi (float le1))))
;; repeat butterflies
(setq j 1)
(while (<= j le1)
;; do a butterfly
(setq i j)
(while (<= i n)
(setq ip (+ i le1)
tr (- (* (aref ar ip) ur)
(* (aref ai ip) ui))
ti (+ (* (aref ar ip) ui)
(* (aref ai ip) ur)))
(aset (- (aref ar i) tr) ar ip)
(aset (- (aref ai i) ti) ai ip)
(aset (+ (aref ar i) tr) ar i)
(aset (+ (aref ai i) ti) ai i)
(inc i le))
(inc j))
(setq tr (- (* ur wr) (* ui wi))
ti (+ (* ur wi) (* ui wr))
ur tr
ui ti))
t))
(defmacro fft-bench ()
`(dotimes (i 10) (fft re im)))
(defun deriv-aux (a) (list '/ (deriv a) a))
(defun deriv (a)
(cond
((atom a)
(cond ((eq a 'x) 1) (t 0)))
((eq (car a) '+)
(cons '+ (mapcar #'deriv (cdr a))))
((eq (car a) '-)
(cons '- (mapcar #'deriv (cdr a))))
((eq (car a) '*)
(list '*
a
(cons '+ (mapcar #'deriv-aux (cdr a)))))
((eq (car a) '/)
(list '-
(list '/
(deriv (cadr a))
(caddr a))
(list '/
(cadr a)
(list '*
(caddr a)
(caddr a)
(deriv (caddr a))))))
(t 'error)))
(defun run ()
(dotimes (i 1000.)
(deriv '(+ (* 3 x x) (* a x x) (*b x) 5))
(deriv '(+ (* 3 x x) (* a x x) (*b x) 5))
(deriv '(+ (* 3 x x) (* a x x) (*b x) 5))
(deriv '(+ (* 3 x x) (* a x x) (*b x) 5))
(deriv '(+ (* 3 x x) (* a x x) (*b x) 5))))
;;;
;;; PUZZLE
;;;
(eval-when (compile load eval)
(defconstant size 511)
(defconstant classmax 3)
(defconstant typemax 12))
(defvar *iii* 0)
(defvar *kount* 0)
(defvar *d* 8.)
(defvar piececount (make-array (1+ classmax) :initial-element 0))
(defvar class (make-array (1+ typemax) :initial-element 0))
(defvar piecemax (make-array (1+ typemax) :initial-element 0))
(defvar puzzle (make-array (1+ size)))
(defvar p (make-array (list (1+ typemax) (1+ size))))
(defun fit (i j)
(let ((end (aref piecemax i)))
(do ((k 0 (1+ k)))
((> k end) t)
(cond ((aref p i k)
(cond ((aref puzzle (+ j k))
(return nil))))))))
(defun place (i j)
(let ((end (aref piecemax i)))
(do (( k 0 (1+ k)))
((> k end))
(cond ((aref p i k)
(setf (aref puzzle (+ j k)) t))))
(setf (aref piececount (aref class i))
(- (aref piececount (aref class i)) 1))
(do ((k j (1+ k)))
((> k size) (print "Puzzle filled") 0)
(unless (aref puzzle k) (return k)))))
(defun puzzle-remove (i j)
(let ((end (aref piecemax i)))
(do ((k 0 (1+ k)))
((> k end))
(cond ((aref p i k)
(setf (aref puzzle (+ j k)) nil))))
(setf (aref piececount (aref class i))
(+ (aref piececount (aref class i)) 1))))
(defun trial (j)
(let ((k 0) (hhh))
(do ((i 0 (1+ i)))
((> i typemax) (setq *kount* (1+ *kount*)) nil)
(cond ((not (= (aref piececount (aref class i)) 0))
(cond
((fit i j)
(setq k (place i j))
; (print k)
(cond
((or (setq hhh (trial k)) (= k 0))
(format t "~%Piece ~4d at ~4d kount=~4d k=~d trial=~a."
(+ i 1) (+ k 1) (inc *kount*) k hhh)
(return-from trial t))
(t (puzzle-remove i j))))))))))
(defun definepiece (iclass ii jj kk)
(let ((index 0))
(do ((i 0 (1+ i)))
((> i ii))
(do ((j 0 (1+ j)))
((> j jj))
(do ((k 0 (1+ k)))
((> k kk))
(setq index (+ i (* *d* (+ j (* *d* k)))))
(setf (aref p *iii* index) t))))
(setf (aref class *iii*) iclass)
(setf (aref piecemax *iii*) index)
(cond ((not (= *iii* typemax))
(setq *iii* (+ *iii* 1))))))
(defun start ()
(do ((m 0 (1+ m)))
((> m size))
(setf (aref puzzle m) t))
(do ((i 1 (1+ i)))
((> i 5))
(do ((j 1 (1+ j)))
((> j 5))
(do ((k 1 (1+ k)))
((> k 5))
(setf (aref puzzle (+ i (* *d* (+ j (* *d* k)))))
nil))))
(do ((i 0 (1+ i)))
((> i typemax))
(do ((m 0 (1+ m)))
((> m size ))
(setf (aref p i m) nil)))
(setq *iii* 0)
(definepiece 0 3 1 0)
(definepiece 0 1 0 3)
(definepiece 0 0 3 1)
(definepiece 0 1 3 0)
(definepiece 0 3 0 1)
(definepiece 0 0 1 3)
(definepiece 1 2 0 0)
(definepiece 1 0 2 0)
(definepiece 1 0 0 2)
(definepiece 2 1 1 0)
(definepiece 2 1 0 1)
(definepiece 2 0 1 1)
(definepiece 3 1 1 1)
(setf (aref piececount 0) 13.)
(setf (aref piececount 1) 3)
(setf (aref piececount 2) 1)
(setf (aref piececount 3) 1)
(let ((m (+ 1 (* *d* (1+ *d*))))
(n 0) (*kount* 0))
(cond ((fit 0 m) (setq n (place 0 m)))
(t (format t "~% error.")))
(cond ((trial n)
(format t "~%success in ~4d trials." *kount*))
(t (format t "~% Failure.")))))
|