File: matrix.tex

package info (click to toggle)
euslisp 9.27%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 55,344 kB
  • sloc: ansic: 41,162; lisp: 3,339; makefile: 256; sh: 208; asm: 138; python: 53
file content (742 lines) | stat: -rw-r--r-- 27,191 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
\newpage
\section{Geometric Functions}
\markright{\arabic{section}. Geometric Functions}

\subsection{Float-vectors}

A float-vector is a simple vector whose elements are specialized to
floating point numbers.
A float-vector can be of any size.
When {\em result} is specified in an argument list,
it should be a float-vector that holds the result.

\begin{refdesc}

\funcdesc{float-vector}{\&rest numbers}{
makes a new float-vector whose elements are {\em numbers}.
Note the difference between {\tt (float-vector 1 2 3)} and {\tt \#F(1 2 3)}.
While the former create a vector each time it is called, the latter
does when it is read.}

\funcdesc{float-vector-p}{obj}{
returns T if {\em obj} is a float-vector.}

\funcdesc{v+}{fltvec1 fltvec2 \&optional result}{
adds two float-vectors.}

\funcdesc{v-}{fltvec1 \&optional fltvec2  result}{
subtract float-vectors. If fltvec2 is omitted, fltvec1 is negated.}

\funcdesc{v.}{fltvec1 fltvec2}{
computes the inner product of two float-vectors.}

\funcdesc{v*}{fltvec1 fltvec2 \&optional result}{
computes the outer product of two float-vectors.}

\funcdesc{v.*}{fltvec1 fltvec2 fltvec3}{
computes the scaler triple product [A,B,C]=(V. A (V* B C))=(V. (V* A B) C).}

\funcdesc{v$<$}{fltvec1 fltvec2}{
returns T if every element of fltvec1 is smaller  than
the corresponding element of fltvec2.}

\funcdesc{v$>$}{fltvec1 fltvec2}{
returns T if every element of fltvec1 is larger than
the corresponding element of fltvec2.}

\funcdesc{vmin}{\&rest fltvec}{
finds the smallest values for each dimension in {\em fltvec},
and makes a float-vector from the values.
{\bf Vmin} and {\bf vmax} are used to find the minimal bounding box
from coordinates of vertices.}

\funcdesc{vmax}{\&rest fltvec}{
finds the greatest values for each dimension in {\em fltvec},
and makes a float-vector from the values.}

\funcdesc{minimal-box}{v-list minvec maxvec \&optional err}{
computes the minimal bounding box for a given vertex-list,
and stores results in {\em minvec} and {\em maxvec}.
If a floating number err is specified, the minimal box is grown
by the ratio, i.e. if the err is 0.01, each element of minvec is decreased
by 1\% of the distance between minvec and maxvec,
and each element of maxvec is increased by 1\%.
{\bf Minimal-box} returns the distance between minvec and maxvec.}

\funcdesc{scale}{number fltvec \&optional result}{
the scaler {\em number} is multiplied to the every element of fltvec.}

\funcdesc{norm}{fltvec}{
$|fltvec|$}

\funcdesc{norm2}{fltvec}{
$|fltvec|^2=({\bf v.} fltvec fltvec)$}

\funcdesc{normalize-vector}{fltvec \&optional result}{
normalizes {\em fltvec} to have the norm 1.0.}

\funcdesc{distance}{fltvec1 fltvec2}{
returns the distance $|fltvec-fltvec2|$ between two float-vectors.}

\funcdesc{distance2}{fltvec1 fltvec2}{
$|fltvec-fltvec2|^2$}

\funcdesc{homo2normal}{homovec \&optional normalvec}{
A homogeneous vector {\em homovec} is converted to its normal representation.}

\funcdesc{homogenize}{normalvec \&optional homovec}{
A normal vector {\em normalvec} is converted to its homogenous representation.}

\funcdesc{midpoint}{p p1 p2 \&optional result}{
{\em P} is float, and {\em p1} and {\em p2} are float-vectors of the same
dimension.
A point $(1-p) p1 + p p2$, which is the point
that breaks {\em p1-p2} by the ratio $p:(1-p)$, is returned.}

\funcdesc{rotate-vector}{fltvec theta axis \&optional result}{
rotates 2D or 3D {\em fltvec} by {\em theta} radian around {\em axis}.
{\em Axis} can be one of {\em :x, :y, :z, 0, 1, 2} or NIL.
When {\em axis} is NIL, {\em fltvec} is taken to be two dimensional.
To rotate a vector around an arbitrary axis in 3D space, 
make a rotation matrix by the {\bf rotation-matrix} function and
multiply it to the vector.}

\end{refdesc}

\subsection{Matrix and Transformation}

A matrix is a two-dimensional array whose elements are all floats.
In most functions a matrix can be of any size,
but the {\bf v*, v.*}, {\bf Euler-angle} and {\bf rpy-angle} functions
can only handle three dimensional matrices.
{\bf Transform, m*} and {\bf transpose} do not restrict
the matrices to be square,
and they operate on general n*m size matrices.

Functions that can accept result parameter
places the computed result there, and no heap is wasted.
All matrix functions are intended for the transformation in the normal
coordinate systems, and not in the homogeneous coordinates.

The {\bf rpy-angle} function decomposes a rotation matrix into three components
of rotation angles around z, y and x axes of the world coordinates.
The {\bf Euler-angle} function is similar to {\bf rpy-angle} but
decomposes into rotation angles around local z, y and again z axes.
Both of these functions return two solutions since angles can be
taken in the opposite directions.

\begin{verbatim}
; Mat is a 3X3 rotation matrix.
(setq rots (rpy-angle mat))
(setq r (unit-matrix 3))
(rotate-matrix r (car rots) :x t r)
(rotate-matrix r (cadr rots) :y t r)
(rotate-matrix r (caddr rots) :z t r)
;--> resulted r is equivalent to mat
\end{verbatim}

To keep track of pairs of a position and a orientation in 3D space, use
the {\bf coordinates} and {\bf cascaded-coords} classes
detailed in the section \ref{Coordinates}.

\begin{refdesc}

\funcdesc{matrix}{\&rest elements}{
makes a new matrix from {\em elements}.
Row x Col = (number of elements) x (length of the 1st element).
Each of {\em elements} can be of any type of sequence.
Each sequence is lined up as a row vector in the matrix.}

\funcdesc{make-matrix}{rowsize columnsize \&optional init}{
makes a matrix of $rowsize \times columnsize$.}

\funcdesc{matrixp}{obj}{
T if {\em obj} is a matrix, i.e. {\em obj} is a two dimensional array
and its elements are floats.}

\funcdesc{matrix-row}{mat row-index}{
extracts a row vector out of matrix {\em mat}.
{\bf matrix-row} is also used to set a vector in a particular row
of a matrix using in conjunction with {\bf setf}.}

\funcdesc{matrix-column}{mat column-index}{
extracts a column vector out of {\em mat}.
{\bf matrix-column} is also used to set a vector in a particular
column of a matrix using in conjunction with {\bf setf}.}

\funcdesc{m*}{matrix1 matrix2 \&optional result}{
concatenates {\em matrix1} and {\em matrix2}.}

\funcdesc{transpose}{matrix \&optional result}{
transposes {\em matrix}, i.e. columns of {\em matrix} are exchanged with
{\em rows}.}

\funcdesc{unit-matrix}{dim}{
makes an identity matrix of {\em dim} $\times$ {\em dim}.}

\funcdesc{replace-matrix}{dest src}{
replaces all the elements of dest matrix with ones of src matrix.}

\funcdesc{scale-matrix}{scalar mat}{
multiplies {\em scaler} to all the elements of {\em mat}.}

\funcdesc{copy-matrix}{matrix}{
makes a copy of {\em matrix}.}

\funcdesc{transform}{matrix fltvector \&optional result}{
multiplies {\em matrix} to {\em fltvector} from the left.}

\funcdesc{transform}{fltvector matrix \&optional result}{
multiplies {\em matrix} to {\em fltvector} from the right.}

\funcdesc{rotate-matrix}{matrix theta axis \&optional world-p result}{
multiplies a rotation matrix from the left (when world-p is non-nil)
or from the right (when world-p is nil).
When a matrix is rotated by {\bf rotate-matrix},
the rotation axis {\bf :x, :y, :z} or 0,1,2
may be taken either in the world coordinates or in the local coordinates.
If {\em world-p} is specified nil, it means rotation along the
axis in the local coordinate system and the rotation matrix is multiplied
from the right.
Else if worldp is non-nil, the rotation is made in the
world coordinates and the rotation matrix is multiplied from the left.
If NIL is given to {\em axis}, {\em matrix} should be two dimensional and
the rotation is taken in 2D space where {\em world-p} does not make sense.}

\funcdesc{rotation-matrix}{theta axis \&optional result}{
makes a 2D or 3D rotation matrix around {\em axis} which can be any of
:x, :y, :z, 0, 1, 2, a 3D float-vector or NIL.
When you make a 2D rotation matrix, axis should be NIL.}

\funcdesc{rotation-angle}{rotation-matrix}{
extracts a equivalent rotation axis and angle from {\em rotation-matrix}
and a list of float and float-vector is returned.
NIL is returned when {\em rotation-matrix} is a unit-matrix.
Also if the rotation angle is too small, the result may have errors.
When {\em rotation-matrix} is 2D,  the single angle value is returned.}

\funcdesc{rpy-matrix}{ang-z ang-y ang-x}{
makes a rotation matrix defined by roll-pitch-yaw angles.
First, a unit-matrix is rotated by ang-x radian along X-axis.
Next, ang-y around Y-axis and finally ang-z around Z-axis.
All the rotation axes are taken in the world coordinates.}

\funcdesc{rpy-angle}{matrix}{
extracts two triplets of roll-pitch-yaw angles of {\em matrix}.}

\funcdesc{Euler-matrix}{ang-z ang-y ang2-z}{
makes a rotation matrix defined by three Euler angles.
First, a unit-matrix is rotated {\em ang-z} around Z-axis, next, {\em ang-y}
around Y-axis and finally {\em ang2-z} again around Z-axis.
All the rotation axes are taken in the local coordinates.}

\funcdesc{Euler-angle}{matrix}{
extracts two tuples of Euler angles.}

%\funcdesc{set-matrix-row}{mat row-index values}{
%puts values in the {\em row-index}th row of matrix {\em mat}.}

%\funcdesc{set-matrix-column}{mat column-index values}{
%put values in the {\em column-index}th column of of matrix {\em mat}.}

\end{refdesc}

\subsection{LU decomposition}
{\bf lu-decompose} and {\bf lu-solve} are provided to solve
simultaneous linear equations.
First, {\bf lu-decompose} decomposes a matrix into a lower triangle matrix
and an upper triable matrix.
If the given matrix is singular, {\bf LU-decompose} returns NIL, otherwise
it returns the permutation vector which should be supplied to {\bf LU-solve}.
{\bf Lu-solve} computes the solution for a LU matrix with a given constant vector.
This method is efficient if solutions for many combinations 
of different constant vectors and the same factor matrix are required.
%These functions are coded in C, and they computes a solution
%for a 3*3 matrix within 3 milli-sec on sun3.
{\bf Simultaneous-equation} would be  more handy when you wish to get
only one solution.
{\bf Lu-determinant} computes a determinant of a lu-decomposed matrix.
{\bf Inverse-matrix} function computes an inverse matrix using {\bf lu-decompose}
once, and {\bf lu-solve} n times.
Computation time for a 3*3 matrix is estimated to be 4 milli-sec.

\begin{refdesc}

\funcdesc{lu-decompose}{matrix \&optional result}{
performs lu-decomposition of {\em matrix}.}

\funcdesc{lu-solve}{lu-mat perm-vector bvector \&optional result}{
solves a linear simultaneous equations which has already been lu-decomposed.
{\em perm-vector} should be the result returned by {\bf lu-decompose}.}

\funcdesc{lu-determinant}{lu-mat perm-vector}{
computes the determinant value for a matrix which has already been 
lu-decomposed.}

\funcdesc{simultaneous-equation}{mat vec}{
solves a linear simultaneous equations whose coefficients are described in
{\em mat} and constant values in {\em vec}.}

\funcdesc{inverse-matrix}{mat}{
makes the inverse matrix of the square matrix, {\em mat}.}

\funcdesc{pseudo-inverse}{mat}{
computes the pseudo inverse matrix using the singular value decomposition.}

\end{refdesc}

\newpage

\subsection{\label{Coordinates}Coordinates}

Coordinate systems and their transformations are represented by
the {\bf coordinates} class.
Instead of 4*4 (homogeneous) matrix representation,
coordinate system in EusLisp is represented by a combination of
a 3*3 rotation matrix and a 3D position vector
mainly for speed and generality.

\begin{refdesc}

\classdesc{coordinates}{propertied-object}{(pos :type float-vector \\
                                         \> rot :type array)}{
defines a coordinate system with a pair of a position vector and a 3x3
rotation matrix.}

\funcdesc{coordinates-p}{obj}{
returns T when obj is an instance of coordinates class or its subclasses.}

\methoddesc{:rot}{}{
returns the 3X3 rotation matrix of this coords.}

\methoddesc{:pos}{}{
returns the 3-D position vector of this coords.}

\methoddesc{:newcoords}{newrot \&optional newpos}{
updates the coords with newrot and newpos. Whenever a condition that changes
the state of this coords occurs,
this method should be called with the new rotation
matrix and the position vector.
This message may invoke another :update method to propagate the event.
If newpos is not given, newrot is given as a instance of coordinate class.}

\methoddesc{:replace-coords}{newrot \&optional newpos}{
changes the rot and pos slots to be updated without calling newcoords method.
If newpos is not given, newrot is given as a instance of coordinate class.}

\metdesc{:coords}{}

\methoddesc{:copy-coords}{\&optional dest}{
If dest is not given, :copy-coords makes another coordinates object
which has the same rot and pos slots. If dest is given, rot and pos of
this coordinates is copied to the dest coordinates.}

\methoddesc{:reset-coords}{}{
forces the rotation matrix of this coords to be identity matrix, and pos
vector to be all zero.}

\metdesc{:worldpos}{}

\metdesc{:worldrot}{}

\methoddesc{:worldcoords}{}{
Computes the position vector, the rotation matrix and the coordinates
of this object represented in the world coordinates. The coordinates class
is always assumed to be represented in world, these method can simply return
pos, rot and self.  These methods are provided for the compatibility with
cascaded-coords class which cannot be assumed to be represented in world.}

\methoddesc{:copy-worldcoords}{\&optional dest}{
First, worldcoords is computed, and it is copied to dest. If no dest
is specified, a coordinates object to store the result is newly created.}

\methoddesc{:rotate-vector}{vec}{
A vector is rotated by the rotation of this coords, i.e., an orientation
vector represented in this coords is converted to the representation
in the world.
The position of this coords does not affect rotation.}

\methoddesc{:transform-vector}{vec}{
A vector in this local coords is transformed to the representation in the world.}

\methoddesc{:inverse-transform-vector}{vec}{
A vector in the world is inversely transformed to the representation in this
local coordinate system.}

\methoddesc{:transform}{trans \&optional (wrt :local)}{
Transform this coords by the trans represented in wrt coords.
Trans must be of type coordinates, and wrt must be one of keywords
{\tt :local, :parent, :world} or an instance of coordinates.
If wrt is {\tt :local}, the trans is applied from the right to this coords,
and if wrt is {\tt :world} or {\tt :parent},
the trans is multiplied from the left.
Else, if wrt is of type coordinates, the trans represented in the wrt
coords is first transformed to the representation in the world, and  it
is applied from the left.}

\methoddesc{:move-to}{trans \&optional (wrt :local)}{
Replaces the rot and pos of the coords with trans represented in wrt.}

\methoddesc{:translate}{ p \&optional (wrt :local)}{
changes the position of this object
relatively with respective to wrt coords.}

\methoddesc{:locate}{ p \&optional (wrt :local)}{
Changes the location of this coords with the parameter represented in wrt.
If wrt is {\tt :local}, then the effect is identical to 
{\bf :translate} with {\em wrt}={\tt :local}.}

\methoddesc{:rotate}{ theta axis \&optional (wrt :local)}{
Rotates this coords relatively by {\em theta} radian around the {\em axis}.
{\em Axis} is one of axis-keywords ({\tt :x, :y} and {\tt :z}) or an arbitrary float-vector.
{\em Axis} is considered to be represented in the {\em wrt} coords.
Thus, if {\em wrt}={\tt :local} and {\em axis}={\tt :z},
the coordinates is rotated around the z
axis of this local coords, and {\em wrt}={\tt :world} or {\tt :parent},
the coords is rotated around the z axis of world coords.
In other words, if {\em wrt}={\tt :local},
a rotation matrix is multiplied from the right of this coords,
and if {\em wrt}={\tt :world} or {\tt :parent},
a rotation matrix is multiplied from the left.
Note that even {\em wrt} is either {\tt :world} or {\tt :parent},
the {\em pos} vector of this coordinates does not change.
For the true rotation around the world axis,
an instance of coordinates class representing the
rotation should be given to {\bf :transform} method.}

\methoddesc{:orient}{ theta axis \&optional (wrt :local)}{
forces setting rot.
This is an absolute version of :{\bf rotate} method.}

\methoddesc{:inverse-transformation}{}{
makes a new coords that is inverse to self.}

\methoddesc{:transformation}{coords (wrt :local)}{
makes the transformation (an instance of coordinates) between this coords
and the coords given as the argument.
If {\em wrt}={\tt :local},
the result is represented in local coords,
i.e., if the resulted transformation is given
as an argument to :transform with {\em wrt}={\tt :local},
this coords is transformed
to be identical with the coords.}

\methoddesc{:Euler}{az1 ay az2}{
sets rot with Euler angles, that are,
rotation angles around z ({\em az1},
y ({\em ay}) and again z {\em az2} axis of
this local coordinates system.}

\methoddesc{:roll-pitch-yaw}{roll pitch yaw}{
sets rot with roll-pitch-yaw angles:
rotation angles around x ({\em yaw}), y ({\em pitch}) and z ({\em roll})
axes of the world coordinate system.}

\methoddesc{:4x4}{\&optional mat44}{
If a matrix of 4x4 is given as {\em mat44},
it is converted to coordinates representation with a 3x3 rotation matrix and
a 3D position vector.
If {\em mat44} is not given, this coordinates is converted to 4x4
matrix representation.}

\longdescription{method}{:init}{\&key \= (pos \#f(0 0 0)) \hspace{8mm} \= \\
 \> (rot \#2f((1 0 0) (0 1 0) (0 0 1))) \\
 \> rpy \>\> {\rm ; roll pitch yaw} \\
 \> euler \>\> {\rm ; az ay az2} \\
 \> axis \>\>  {\rm ; rotation-axis} \\
 \> angle \>\> {\rm ; rotation-angle} \\
 \> 4X4   \>\> {\rm ; 4x4 matrix} \\
 \> coords \>\> {\rm ; another coordinates} \\
 \> properties \>\> {\rm ; list of (ind . value) pair} \\
 \> name \>\> {\rm ; name property}}{
initializes this coordinates object and sets rot and pos.
The meaning of each keyword follows:
\begin{description}
\item[:dimension] 2 or 3 (default is 3)
\item[:pos] specifies a position vector (defaulted to \#f(0 0 0))
\item[:rot] specifies a rotation matrix (defaulted to a unit-matrix)
\item[:euler] gives a sequence of three elements for Euler angles
\item[:rpy] gives a sequence of three elements for roll-pitch-yaw
\item[:axis] rotation axis (:x,:y,:z or an arbitrary float-vector)
\item[:angle] rotation angle (used with :axis)
\item[:wrt] where the rotation axis is taken (default is :local)
\item[:4X4] 4X4 matrix is used to specify both pos and rot
\item[:coords] copies pos and rot from coords
\item[:name] set :name property 
\end{description}
{\tt :Angle} can only be used in conjunction with the {\tt :axis}
that is determined in the {\tt :wrt} coordinates.
Without regard to {\tt :wrt}, {\tt :Euler} always specifies
the Euler angles, {\em az1, ay} and {\em az2}, 
defined in the local coordinates,
and {\tt :rpy} specifies the angles around
{\em z}, {\em y} and {\em x} axes of the world coordinates.
Two or more of {\tt :rot, :Euler, :rpy, :axis} and {\tt :4X4}
cannot be specified simultaneously, although no error is reported.
Sequences can be supplied to the {\tt :axis} and {\tt :angle} parameters,
which mean successive rotations around the given axes.
List of pairs of an attribute and its value can be given as {\tt :properties}
argument. These pairs are copied in the plist of this coordinates.}

\subsection{CascadedCoords}

\classdesc{cascaded-coords}{coordinates}{(parent descendants worldcoords manager changed)}{
defines a linked coordinates. {\bf Cascaded-coords} is often abbreviated
as \bfx{cascoords}.}

\methoddesc{:inheritance}{}{
returns the inheritance tree list describing all the descendants of the
cascoords.
If {\tt a} and {\tt b} are the direct descendants of this coords,
and {\tt c} is a descendant of {\tt a}, {\tt ((a (c)) (b))} is returned.}

\methoddesc{:assoc}{childcoords \&optional relative-coords}{
{\em childcoords} is associated to this cascoords as a descendant.
If childcoords has been already assoc'ed to some other cascoords, first
childcoords is dissoc'ed since each cascoords can have only one parent.
The orientation or location of childcoords in the world does not change.}

\methoddesc{:dissoc}{childcoords}{
dissociates (removes) {\em childcoords} from the descendants list of this coords.
The orientation or location of childcoords in the world does not change.}

\methoddesc{:changed}{}{
informs this coords that the coordinates of parent has changed,
and the re-computation of worldcoords is needed when it is requested later.}

\methoddesc{:update}{}{
is called by the {\bf :worldcoords} method
to recompute the current worldcoord.}

\methoddesc{:worldcoords}{}{
returns a coordinates object which represents this coord in the world
by concatenating all the cascoords from the root to this coords.
The result is held in this object and reused later.
Thus, you should not modify the resulted coords.}

\methoddesc{:worldpos}{}{
returns rot of this coordinates represented in the world.}

\methoddesc{:worldrot}{}{
returns pos of this coordinates represented in the world.}

\methoddesc{:transform-vector}{vec}{
Regarding {\em vec} represented in this local coords,
transforms it to the representation in the world.}

\methoddesc{:inverse-transform-vector}{vec}{
{\em vec} represented in the world is inversely transformed into the
representation in this local coords.}

\methoddesc{:inverse-transformation}{}{
makes an instance of coordinates which represents inverse transformation
of this coord.}

\metdesc{:transform}{trans  \&optional (wrt :local)}

\metdesc{:translate}{fltvec \&optional (wrt :local)}

\metdesc{:locate}{fltvec \&optional (wrt :local)}

\metdesc{:rotate}{theta axis \&optional (wrt :local)}

\methoddesc{:orient}{theta axis \&optional (wrt :local)}{
Refer to the descriptions in class {\bf coordinates}.}

\fundesc{make-coords}{\&key pos rot rpy Euler angle axis 4X4 coords name}

\fundesc{make-cascoords}{\&key pos rot rpy Euler angle axis 4X4 coords name}

\fundesc{coords}{\&key pos rot rpy Euler angle axis 4X4 coords name}

\funcdesc{cascoords}{\&key pos rot rpy Euler angle axis 4X4 coords name}{
All these functions make new coordinates or cascaded-coordinates.
For the keyword parameter, see {\bf :init} method of class coordinates.}

\funcdesc{transform-coords}{coords1 coords2 \&optional (coords3 (coords))}{
Coords1 is applied (multiplied) to the coords2 from the left.
The product is stored in coords3.}

\funcdesc{transform-coords*}{\&rest coords}{
concatenates transformations listed in {\em coords}.
An instance of coordinates that represents the concatenated transformation
is returned.}

\funcdesc{wrt}{coords vec}{
transforms {\em vec} into the representation in {\em coords}.
The result is equivalent to
{\tt (send {\em coords} :trans\-form-\-vec\-tor {\em vec})}.}

\end{refdesc}

\newpage
\subsection{Relationship between transformation matrix and coordinates class}

Relationship between transformation matrix and coordinates class is described,
where a transformation matrix T represents a $4\times4$(homogeneous) matrix as below.
\[
T = \begin{pmatrix}
\mathbf{R}_T & \mathbf{p}_T \\
\mathbf{0} & 1
\end{pmatrix}
\]

$\mathbf{R}_T$ is a $3\times3$ matrix, and $\mathbf{p}_T$ is a $3\times1$ matrix
(a float-vector which has 3 elements in euslisp).
Coordinates class has
slot variables rot and pos. They are $\mathbf{R}_T$ and $\mathbf{p}_T$ respectively.

\subsection*{Getter method for rotation matrix and position}

$\mathbf{R}$ and $\mathbf{p}$ can be obtained using methods of the coordinates class.

T is an instance of the coordinate class.

\begin{refdesc}

{\bf (send T :rot)}
\desclist{\hspace{0mm}
$\Rightarrow$ $\mathbf{R}_T$
}

{\bf (send T :pos)}
\desclist{\hspace{0mm}
$\Rightarrow$ $\mathbf{p}_T$
}

\end{refdesc}

\subsubsection*{Methods for transforming vectors}

$\mathbf{v}$ is 3-D position vector.

\begin{refdesc}

{\bf (send T :rotate-vector $\mathbf{v}$)}
\desclist{\hspace{0mm}
$\Rightarrow$  $\mathbf{R}_T \mathbf{v}$
}

{\bf (send T :inverse-rotate-vector $\mathbf{v}$)}
\desclist{\hspace{0mm}
$\Rightarrow$ $\mathbf{v}^T \mathbf{R}_T$
}

{\bf (send T :transform-vector $\mathbf{v}$)}
\desclist{\hspace{0mm}
$\Rightarrow$ $\mathbf{R}_T\mathbf{v} + \mathbf{p}_T$

Converts a vector represented in a local coordinate system T
to a vector represented in the world coordinate system.
}

{\bf (send T :inverse-transform-vector $\mathbf{v}$)}
\desclist{\hspace{0mm}
$\Rightarrow$ $\mathbf{R}_T^{-1}\left( \mathbf{v} - \mathbf{p}_T \right)$

Converts a vector represented in the world coordinate system.
to a vector represented in a local coordinate system T.
}

\end{refdesc}

\subsubsection*{Methods returing coordinates without modifying itself}

\begin{refdesc}

{\bf (send T :inverse-transformation)}
\desclist{\hspace{0mm}
$\Rightarrow$ $T^{-1}$

Returns inverse matrix.
\[
T^{-1} = \begin{pmatrix}
 \mathbf{R}_T^{-1} & -\mathbf{R}_T^{-1}\mathbf{p}_T \\
 \mathbf{0} & 1
\end{pmatrix}
\]
}

{\bf (send T :transformation A (\&optional (wrt :local)))}
\desclist{\hspace{0mm}
when wrt == :local, $T^{-1}A$ is returned.

when wrt == :world, $AT^{-1}$ is returned.

when wrt == W (coordinates class), $W^{-1}AT^{-1}W$ is returned.
}

\end{refdesc}

\subsubsection*{Methods modifying itself}

A is an instance of the coordinates class.

$\Leftrightarrow$ represents that
slot variables (pos or rot) refer to a given instance (matrix or float vector).
Please note that when one is changed, the other also reflects the change.

$\leftarrow$ represents substitution.

\begin{refdesc}

{\bf (send T :newcoords A)}
\desclist{\hspace{0mm}
$\mathbf{R}_T \Leftrightarrow \mathbf{R}_A$

$\mathbf{p}_T \Leftrightarrow \mathbf{p}_A$
}

{\bf (send T :newcoords $\mathbf{R}$ $\mathbf{p}$)}
\desclist{\hspace{0mm}
$\mathbf{R}_T \Leftrightarrow \mathbf{R}$

$\mathbf{p}_T \Leftrightarrow \mathbf{p}$
}

{\bf (send T :move-to A (\&optional (wrt :local)))}
\desclist{\hspace{0mm}
when wrt == :local,$T \leftarrow TA$

when wrt == :world,$T \Leftrightarrow A$

when wrt == W (coordinates class), $T \leftarrow WA$
}

{\bf (send T :translate $\mathbf{v}$ (\&optional (wrt :local)))}
\desclist{\hspace{0mm}
when wrt == :local,
$\mathbf{p}_{T} \leftarrow \mathbf{p}_{T} + \mathbf{R}_{T}\mathbf{v}$

when wrt == :world,
$\mathbf{p}_{T} \leftarrow \mathbf{p}_{T} + \mathbf{v}$

when wrt == W (coordinates class),
$\mathbf{p}_{T} \leftarrow \mathbf{p}_{T} + \mathbf{R}_{W}\mathbf{v}$
}

{\bf (send T :locate $\mathbf{v}$ (\&optional (wrt :local)))}
\desclist{\hspace{0mm}
when wrt == :local,
$\mathbf{p}_{T} \leftarrow \mathbf{p}_{T} + \mathbf{R}_{T} \mathbf{v}$

when wrt == :world,
$\mathbf{p}_{T} \leftarrow \mathbf{v}$

when wrt == W (coordinates class),
$\mathbf{p}_{T} \leftarrow \mathbf{p}_{W} + \mathbf{R}_{W}\mathbf{v}$
}

{\bf (send T :transform A (\&optional (wrt :local)))}
\desclist{\hspace{0mm}
when wrt == :local, $T \leftarrow TA$

when wrt == :world, $T \leftarrow AT$

when wrt == W (coordinates class), $T \leftarrow$ $\left( WAW \right)^{-1} T$
}

\end{refdesc}

\newpage