1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
;;;; array.l
;;;; array and vector operations:
;;;; readmacro, make-array and vector/matrix arithmetics
;;;; Copyright(c)1988, Toshihiro MATSUI, Electrotechnical Laboratory
;;;;
(in-package "LISP")
(export '(make-array array-total-size
fill-pointer array-rank array-dimensions array-dimension
array-vector row-major-aref list-dimensions read-array
read-float-array read-integer-array float-vector-p
integer-vector-p bit-vector-p matrixp make-matrix
matrix-row matrix-column set-matrix-row set-matrix-column
replace-matrix copy-matrix scale-matrix matrix
acos asin unit-matrix m** simultaneous-equation
inverse-matrix vector-x vector-y vector-z v=
euler-matrix rpy-matrix))
;(defclass bit-vector :super vector
; :element-type :bit)
;(eval-when (compile)
; (defclass array :super object
; :slots
; (entity rank fillpointer displaced-index-offset
; dim0 dim1 dim2 dim3 dim4 dim5 dim6)))
(eval-when (load eval)
#|
#define ELM_FIXED 0
#define ELM_BIT 1
#define ELM_CHAR 2
#define ELM_BYTE 3
#define ELM_INT 4
#define ELM_FLOAT 5
#define ELM_FOREIGN 6
#define ELM_POINTER 7
|#
(defmethod vectorclass
(:elmtype () element-type)
(:element-type ()
(second (assoc element-type '(
(0 :object) (1 :bit) (2 :character) (3 :byte)
(4 :integer) (5 :float) (6 :foreign) (7 t) ))) )
)
(defmethod vector
(:elmtype () (send (class self) :elmtype))
(:element-type () (send (class self) :element-type))
)
(defmethod array
(:element-type ()
(cond ((float-vector-p entity) :float)
((integer-vector-p entity) :integer)
((stringp entity) :character)
((bit-vector-p entity) :bit)
(t t))))
(defun fill-initial-contents (vec offset dimensions seq)
(let ((major-dimension (pop dimensions))
(increments 0))
(cond
(dimensions
(setq increments (apply #'* dimensions))
(dotimes (i major-dimension)
(fill-initial-contents vec offset dimensions (elt seq i))
(inc offset increments)))
(t
(dotimes (i (length seq))
(setf (aref vec offset) (elt seq i))
(inc offset)
(inc increments)
(if (> increments major-dimension)
(error "array dimension mismatch")))))
vec))
(defun make-array (dim &key (element-type vector)
(fill-pointer nil)
(displaced-to nil)
(displaced-index-offset 0)
(adjustable nil)
(initial-contents nil)
(initial-element nil)
&aux entity a)
(unless (classp element-type)
(setq element-type
(case element-type
((:character character :char char :byte byte) string)
((:bit bit) bit-vector)
((:float float) float-vector)
((:integer integer :int int fixnum :fixnum) integer-vector)
(t vector))))
(cond ((integerp dim) ;make a simple vector
(setq entity (instantiate element-type dim))
(setq a entity)
(setq dim (list dim)))
(t
(setq a (instantiate array))
(let* ((i 0)
(rank (length dim))
(total-size (apply #'* dim)))
(if (> rank 7) (error "array rank limit over"))
(unless (every #'integerp dim)
(error "integer expected for array dimensions"))
(setq entity
(cond ((vectorp displaced-to) displaced-to)
((arrayp displaced-to) (array-entity displaced-to))
(t (instantiate element-type (max 1 total-size)))))
(setq (a . rank) rank)
(setf (array-entity a) entity)
(setf (array-fill-pointer a)
(if (numberp fill-pointer)
fill-pointer
(if fill-pointer total-size nil)))
(setf (array-displaced-index-offset a) displaced-index-offset)
(do ((i 0 (1+ i)))
((>= i rank))
(setslot a array (+ i 5) (elt dim i))))))
(when initial-element (fill entity initial-element))
(when initial-contents
(fill-initial-contents entity 0 dim initial-contents))
a)
(defun array-total-size (a)
(let ((rank (a . rank)) (tsize 1))
(dotimes (n rank)
(setq tsize (* tsize (slot a array (+ 5 n)))))
tsize))
(defun fill-pointer (a)
(if (arrayp a) (a . fill-pointer) (error "not an array")) )
(defun array-rank (a) (a . rank))
(defun array-dimensions (a)
(let ((rank (a . rank)) dims)
(while (> rank 0) (setq dims (cons (slot a array (+ 5 (dec rank))) dims)))
dims))
(defun array-dimension (a axis)
(if (arrayp a) (slot a array (+ 5 axis))))
(defun array-vector (a)
(cond ((vectorp a) a)
((arrayp a) (array-entity a))
(t (error "not array"))))
(defun row-major-aref (a index)
(aref (array-entity a) index))
;;;
;;; make intvector
;;;
;(defun make-intvector (len)
; (instantiate integer-vector len))
;(defun integer-vector (&rest l)
; (let* ((llen (length l))
; (iv (make-intvector llen))
; )
; (dotimes (i llen iv)
; (setf (aref iv i) (pop l)))))
;)
;;;
;;; make a bit-vector of length 32 from an integer
;;;
#|
(defun make-bits (n)
(let
((bv (instantiate bit-vector 32)))
(dotimes (i 32) (setbit bv i (if (evenp n) 0 1)) (setq n (ash n -1)))
bv))
|#
;;; array reader for #nA, #nF and #nI sharp macros
(defun list-dimensions (list)
(cond ((consp (car list))
(cons (length list) (list-dimensions (car list))))
(t (list (length list)))))
(defun read-array (strm char num)
(let ((list (read strm t t t)))
(make-array (list-dimensions list) :initial-contents list)))
(defun read-float-array (strm char num)
(let ((list (read strm t t t)))
(if (= num 0)
(apply 'float-vector list)
(make-array (list-dimensions list)
:element-type :float
:initial-contents list))))
(defun read-integer-array (strm char num)
(let ((list (read strm t t t)))
(if (= num 0)
(apply 'integer-vector list)
(make-array (list-dimensions list)
:element-type :integer
:initial-contents list))))
(eval-when (load eval)
(set-dispatch-macro-character #\# #\A 'read-array)
(set-dispatch-macro-character #\# #\F 'read-float-array)
(set-dispatch-macro-character #\# #\I 'read-integer-array)
)
;;;; floatvector and matrix
;
(eval-when (load eval)
(defun float-vector-p (obj) (derivedp obj float-vector))
(defun integer-vector-p (obj) (derivedp obj integer-vector))
(defun bit-vector-p (obj) (derivedp obj bit-vector))
(defun matrixp (obj)
(and (derivedp obj array) (float-vector-p (obj . entity))))
;(defun vector (&rest vlist)
; (let* ((size (length vlist)) (vec (instantiate vector size)) (i 0))
; (while (< i size) (setf (aref vec i) (pop vlist)) (inc i))
; vec))
(defun make-matrix (row column &optional init)
(make-array (list row column) :element-type :float :initial-contents init))
(defun matrix-row (mat row)
; extract a row vector from a matrix
(when (eq (array-rank mat) 2)
(subseq (mat . entity) (* (mat . dim1) row) (* (mat . dim1) (1+ row)))))
(defun matrix-column (mat col)
; extract a colume vector out of a matrix
(when (eq (array-rank mat) 2)
(let* ((matrow (array-dim0 mat))
(matcol (array-dim1 mat))
(ent (array-entity mat))
(v (instantiate (class (array-entity mat)) matrow)))
(dotimes (i matrow)
(setf (aref v i) (aref ent (+ col (* i matcol)))))
v)))
(defun set-matrix-row (mat row values)
(when (eq (array-rank mat) 2)
(replace (mat . entity) values
:start1 (* (mat . dim1) row)
:end1 (* (mat . dim1) (1+ row))) )
mat)
(defun set-matrix-column (mat col values)
(when (eq (array-rank mat) 2)
(let* ((matrow (array-dim0 mat))
(matcol (array-dim1 mat))
(ent (array-entity mat)) )
(dotimes (i matrow)
(setf (aref ent (+ col (* i matcol))) (elt values i)))
))
mat)
(defun replace-matrix (dest src)
(replace (array-entity dest) (array-entity src))
dest)
(defun copy-matrix (mat)
(let* ((r (make-matrix (array-dim0 mat) (array-dim1 mat))))
(replace (array-entity r) (array-entity mat))
r))
(defun scale-matrix (s m &optional (result (copy-matrix m)))
(scale s (array-entity m) (array-entity result))
result)
(defun matrix (&rest seq)
(make-matrix (length seq) (apply #'max (mapcar #'length seq)) seq))
(defun acos (x) (atan (sqrt (- 1.0 (* x x))) x))
(defun asin (x) (atan x (sqrt (- 1.0 (* x x)))))
(defun unit-matrix (&optional (n 3))
(let ((mat (make-matrix n n)))
(dotimes (i n) (aset mat i i 1.0))
mat))
(defun m** (m1 m2 &rest more-matrices &aux mat)
(setq mat (m* m1 m2))
(dolist (m more-matrices) (m* mat m mat))
mat)
(defun simultaneous-equation (mat vec)
(let* ((work (unit-matrix (array-dimension mat 0)))
(perm (lu-decompose mat work)))
(lu-solve work perm vec)))
(defun inverse-matrix (mat)
(let* ((dim (array-dimension mat 0))
(work (unit-matrix dim))
(perm (lu-decompose mat work))
(rvec)
(result (make-matrix dim dim))
(vec (instantiate float-vector dim))
(i 0))
(if (null perm) (return-from inverse-matrix 'degenerated))
(dotimes (i dim)
(setf (aref vec i) 1.0)
(setq rvec (lu-solve work perm vec))
(dotimes (j dim) (aset result j i (aref rvec j) ))
(setf (aref vec i) 0.0))
result))
#|
(defun pseudo-inverse (a b)
;;; a and b are n*m (m>n) matrix
(let ((at (transpose a)))
(m* (m* b at) (inverse-matrix (m* a at)))) )
)
|#
;;;
(defun vector-x (p) (aref (the float-vector p) 0))
(defun vector-y (p) (aref (the float-vector p) 1))
(defun vector-z (p) (aref (the float-vector p) 2))
(defun v= (a b)
(zerop (distance a b)))
(defun euler-matrix (az ay az2)
"EULER-MATRIX (az ay az2) creates a rotation matrix which has been
rotated az, ay, and az2 radian around local z, y, and again z axes.
EULER-ANGLE extracts these angles out of a matrix."
(let ((r (rotation-matrix az :z)))
(rotate-matrix r ay :y nil r)
(rotate-matrix r az2 :z nil r)
r) )
(defun rpy-matrix (az ay ax)
"RPY-MATRIX (az ay ax) creates a new rotation matrix which has been
rotated ax radian around x-axis in WORLD, ay radian around y-axis in
WORLD, and az radian around z axis in WORLD, in this order.
These angles can be extracted by the RPY-ANGLE function."
(let ((r (rotation-matrix ax :x)))
(rotate-matrix r ay :y t r)
(rotate-matrix r az :z t r)
r) )
(provide :array "@(#)$Id$")
|