File: vectorarray.c

package info (click to toggle)
euslisp 9.31%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 55,448 kB
  • sloc: ansic: 41,610; lisp: 3,339; makefile: 286; sh: 238; asm: 138; python: 53
file content (484 lines) | stat: -rw-r--r-- 14,359 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/****************************************************************/
/* EUSLISP vector and array functions
/*
/*	1987-Sep-24
/*	1996-Jan  Bignum return
/*	Copyright Toshihiro MATSUI,Electrotechinical Laboratory,1988.
/****************************************************************/
static char *rcsid="@(#)$Id$";

#include "../c/eus.h"

pointer MKVECTOR(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ register pointer v;
  register int i;
  v=makevector(C_VECTOR,n);
  for (i=0; i<n; i++) v->c.vec.v[i]=argv[i];
#ifdef SAFETY
  take_care(v);
#endif
  return(v);}

pointer MKINTVECTOR(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ register pointer v;
  register int i;
  v=makevector(C_INTVECTOR,n);
  for (i=0; i<n; i++) v->c.ivec.iv[i]=bigintval(argv[i]);
#ifdef SAFETY
  take_care(v);
#endif
  return(v);}

pointer vref(a,n)
	/*simple but not general vector (one dimensional) reference*/
register pointer a;
register int n;
{ register eusinteger_t x;
  numunion nu;
  if (n<0 || vecsize(a)<=n ) error(E_ARRAYINDEX);
  switch(elmtypeof(a)) {
    case ELM_FIXED: error(E_NOVECTOR);
    case ELM_CHAR:
    case ELM_BYTE:  return(makeint(a->c.str.chars[n]));
    case ELM_FLOAT: return(makeflt(a->c.fvec.fv[n]));
    case ELM_INT:  x=a->c.ivec.iv[n];  return(mkbigint(x));
#if (WORD_SIZE == 64)
    /*
			hanai: 32 was hard coded.
			This size must be equal to that of eusinteger_t.
			Constant 1 must be written as 1L.
			Otherwise 1 << 32 becomes 1, meaning 0x00000001.
			*/
    case ELM_BIT:  x=1L<<(n % 64); 
	            if (a->c.ivec.iv[n/64] & x) return(makeint(1));
		    else return(makeint(0));
#else
    case ELM_BIT:  x=1<<(n % 32); 
	            if (a->c.ivec.iv[n/32] & x) return(makeint(1));
		    else return(makeint(0));
#endif
    case ELM_FOREIGN: return(makeint(((byte *)(a->c.ivec.iv[0]))[n]));
    case ELM_POINTER:
    default: return(a->c.vec.v[n]);}}

pointer SVREF(ctx,n,argv)
register context *ctx;
int n;
register pointer argv[];
{ register pointer a=argv[0];
  ckarg(2);
  n=ckintval(argv[1]);
  if (n<0) error(E_ARRAYINDEX);
  if (isvector(a)) {
    if (elmtypeof(a)==ELM_POINTER) {
      if (vecsize(a)<=n) error(E_ARRAYINDEX);
      return(a->c.vec.v[n]);}
    else error(E_NOVECTOR);}
  else if (isnum(a)) error(E_NOVECTOR);
  else if (objsize(a)<=n) error(E_ARRAYINDEX);
  a=a->c.obj.iv[n];
  if (a==UNBOUND) return(QUNBOUND);
  return(a);}
 
pointer vset(a,n,newval)
register pointer a;
register int n;
pointer newval;
{ register int x,y;
  numunion nu;
  extern eusinteger_t coerceintval(pointer);

  if (n<0 || vecsize(a)<=n) error(E_ARRAYINDEX);
  switch(elmtypeof(a)) {
#if (WORD_SIZE == 64)
	case ELM_BIT:
		x=1L<<(n % 64);
		y=(ckintval(newval) & 1L)<<(n % 64);
		a->c.ivec.iv[n/64]=(a->c.ivec.iv[n/64] & (~ x)) | y;
	        return(newval);
#else
	case ELM_BIT:
		x=1<<(n % 32);
		y=(ckintval(newval) & 1)<<(n % 32);
		a->c.ivec.iv[n/32]=a->c.ivec.iv[n/32] & (~ x) | y;
	        return(newval);
#endif
	case ELM_BYTE: case ELM_CHAR:
		a->c.str.chars[n]=ckintval(newval); return(newval);
	case ELM_INT:
		a->c.ivec.iv[n]=coerceintval(newval);
		return(newval);
	case ELM_FLOAT:
		a->c.fvec.fv[n]=ckfltval(newval);  return(newval);
	case ELM_FOREIGN:
		((byte *)(a->c.ivec.iv[0]))[n]=ckintval(newval);
		return(newval);
	case ELM_POINTER:
        pointer_update(a->c.vec.v[n],newval);
		return(newval);} }

pointer SVSET(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ register pointer a=argv[0],newval=argv[2];
  ckarg(3);
  n=ckintval(argv[1]);
  if (n<0) error(E_ARRAYINDEX);
  if (isvector(a)) {
    if (elmtypeof(a)==ELM_POINTER) {
      if (vecsize(a)<=n) error(E_ARRAYINDEX);
      pointer_update(a->c.vec.v[n],newval);
      return(newval);}
    else error(E_NOVECTOR);}
  else if (isnum(a)) error(E_NOVECTOR);
  else if (objsize(a)<=n) error(E_ARRAYINDEX);
  pointer_update(a->c.obj.iv[n],newval);
  return(newval);}


/****************************************************************/
/* A R R A Y
/****************************************************************/

int arrayindex(a,n,indices)
register pointer a;
register int n;
register pointer *indices;
{ register int index=0,i1,i2;
  register pointer *dim=a->c.ary.dim,p1,p2;

  if (n!=intval(a->c.ary.rank)) error(E_ARRAYDIMENSION);
  while (n-- >0) {
    p1= *indices++;
    p2= *dim++;
    i1= ckintval(p1);
    i2= intval(p2);
    if (i1>=i2) error(E_ARRAYINDEX);
    index=index*i2 + i1; }
  return(index+intval(a->c.ary.offset));}
    
pointer AREF(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ register pointer a=argv[0];
  register int i;
  if (n<2) error(E_MISMATCHARG);
  i=ckintval(argv[1]);
#if 0
  printf("aref %d\n", i);
#endif
  if (isvector(a)){ return(vref(a,i));}
#if 0 
  printf("aref ok\n");
#endif 
  if (!isarray(a)) error(E_NOARRAY);
  else return((pointer)vref(a->c.ary.entity,arrayindex(a,n-1,&argv[1])));}

pointer ASET(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ register pointer a=argv[0];
  register pointer val=argv[n-1];

  if (n<3) error(E_MISMATCHARG);
  if (isvector(a))  return(vset(a,ckintval(argv[1]),val));
  if (!isarray(a)) error(E_NOARRAY);
  return(vset(a->c.ary.entity,arrayindex(a,n-2,&argv[1]),val));}

pointer ARRAYP(ctx,n,argv)
register context *ctx;
int n;
register pointer argv[];
{ ckarg(1);
  if (isnum(argv[0])) return(NIL);
  else if (isarray(argv[0])) return(T);
  else if (isvector(argv[0])) return(T);
  else return(NIL);}

pointer VECTORPOP(ctx,n,argv)
register context *ctx;
int n;
pointer argv[];
{ register pointer a=argv[0],r;
  register int fp;

  ckarg(1);
  printf("vectorpop\n");
  if (!isarray(a)) error(E_NOARRAY);
  if (intval(a->c.ary.rank)!=1) error(E_ARRAYDIMENSION);
  fp=intval(a->c.ary.fillpointer);
  if (fp==0) error(E_ARRAYINDEX);
  fp--;
  r=(pointer)vref(a->c.ary.entity,fp+intval(a->c.ary.offset));
  a->c.ary.fillpointer=makeint(fp);
  return(r);}

pointer VECTORPUSH(ctx,n,argv)
register context *ctx;
int n;
pointer argv[];
{ register pointer a=argv[1];
  register int fp;

  ckarg(2);
  if (!isarray(a)) error(E_NOARRAY);
  if (intval(a->c.ary.rank)!=1) error(E_ARRAYDIMENSION);
  fp=ckintval(a->c.ary.fillpointer);
  vset(a->c.ary.entity,fp+intval(a->c.ary.offset),argv[0]);
  a->c.ary.fillpointer=makeint(fp+1);
  return(argv[0]);}

pointer VECTOREXPUSH(ctx,n,argv)	/*vector-push-extend*/
register context *ctx;
int n;
pointer argv[];
{ register pointer a=argv[1],entity,new;
  register int i,fp,vsize;

  ckarg(2);
  if (!isarray(a)) error(E_NOARRAY);
  if (intval(a->c.ary.rank)!=1) error(E_ARRAYDIMENSION);
  fp=ckintval(a->c.ary.fillpointer);
  entity=a->c.ary.entity;
  vsize=vecsize(entity);
  if (fp>=vsize) {	/*extend vector*/
    new=makevector(classof(entity),fp*2);
    switch(elmtypeof(entity)) {
      case ELM_BIT: n=(vsize+WORD_SIZE-1)/WORD_SIZE; break;
      case ELM_CHAR: case ELM_BYTE: n=(vsize+sizeof(eusinteger_t))/sizeof(eusinteger_t); break;
      default: n=vsize;}
    for (i=0; i<n; i++) pointer_update(new->c.vec.v[i],entity->c.vec.v[i]);
    entity=new;
    pointer_update(a->c.ary.entity,entity);
    a->c.ary.dim[0]=makeint(fp*2);}
  vset(entity,fp,argv[0]);
  a->c.ary.fillpointer=makeint(fp+1);
  return(argv[0]);}

pointer VECTORP(ctx,n,argv)
register context *ctx;
int n;
pointer argv[];
{ register pointer a=argv[0];
  ckarg(1);
  if (ispointer(a)) return(elmtypeof(a)?T:NIL);
  else return(NIL);}

/****************************************************************/
/* bit vector
/****************************************************************/

#define isbitvector(p) (isvector(p) && (elmtypeof(p)==ELM_BIT))

pointer BIT(ctx,n,argv)
register context *ctx;
int n;
pointer argv[];
{ pointer a=argv[0];
  eusinteger_t x;
  ckarg(2);
  n=ckintval(argv[1]);
#if (WORD_SIZE == 64)
  if (isbitvector(a)) {
    if (n<0 || vecsize(a)<=n) error(E_ARRAYINDEX);
    x=(a->c.ivec.iv[n/64]) & (1L<<(n % 64));
    return(makeint(x?1L:0L));}
#else
  if (isbitvector(a)) {
    if (n<0 || vecsize(a)<=n) error(E_ARRAYINDEX);
    x=(a->c.ivec.iv[n/32]) & (1<<(n % 32));
    return(makeint(x?1:0));}
#endif
  else error(E_BITVECTOR);}

pointer SETBIT(ctx,n,argv)
register context *ctx;
int n;
pointer argv[];
{ pointer a=argv[0];
  int val;
  ckarg(3);
  n=ckintval(argv[1]);
  val=ckintval(argv[2]) & 1;
#if (WORD_SIZE == 64)
  if (isbitvector(a)) {
    if (n<0 || vecsize(a)<=n) error(E_ARRAYINDEX);
    if (val) a->c.ivec.iv[n/64]|=  (1L<<(n%64));
    else     a->c.ivec.iv[n/64]&= ~(1L<<(n%64));
    return(makeint(val));}
#else
  if (isbitvector(a)) {
    if (n<0 || vecsize(a)<=n) error(E_ARRAYINDEX);
    if (val) a->c.ivec.iv[n/32]|=  (1<<(n%32));
    else     a->c.ivec.iv[n/32]&= ~(1<<(n%32));
    return(makeint(val));}
#endif
  else error(E_BITVECTOR);}

pointer BITAND(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ pointer result;
  register eusinteger_t *bv1, *bv2, *rbv, s; register long i=0;
  ckarg2(2,3);
  if (!isbitvector(argv[0]) || !isbitvector(argv[1])) error(E_BITVECTOR);
  s=vecsize(argv[0]);
  if (s!=vecsize(argv[1])) error(E_ARRAYINDEX);
  if (n==3) {
    result=argv[2];
    if (!isbitvector(result)) error(E_BITVECTOR);
    if (s!=vecsize(result)) error(E_ARRAYINDEX);}
  else result=makevector(C_BITVECTOR,s);
  bv1=argv[0]->c.ivec.iv; bv2=argv[1]->c.ivec.iv; rbv=result->c.ivec.iv;
  while (i<(s+WORD_SIZE-1)/WORD_SIZE) {  rbv[i]=bv1[i] & bv2[i]; i++;}
  return(result);}

pointer BITIOR(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ pointer result;
  register eusinteger_t *bv1, *bv2, *rbv, s; register long i=0;
  ckarg2(2,3);
  if (!isbitvector(argv[0]) || !isbitvector(argv[1])) error(E_BITVECTOR);
  s=vecsize(argv[0]);
  if (s!=vecsize(argv[1])) error(E_ARRAYINDEX);
  if (n==3) {
    result=argv[2];
    if (!isbitvector(result)) error(E_BITVECTOR);
    if (s!=vecsize(result)) error(E_ARRAYINDEX);}
  else result=makevector(C_BITVECTOR,s);
  bv1=argv[0]->c.ivec.iv; bv2=argv[1]->c.ivec.iv; rbv=result->c.ivec.iv;
  while (i<(s+WORD_SIZE-1)/WORD_SIZE) {  rbv[i]=bv1[i] | bv2[i]; i++;}
  return(result);}

pointer BITXOR(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ pointer result;
  register eusinteger_t *bv1, *bv2, *rbv, s; register long i=0;
  ckarg2(2,3);
  if (!isbitvector(argv[0]) || !isbitvector(argv[1])) error(E_BITVECTOR);
  s=vecsize(argv[0]);
  if (s!=vecsize(argv[1])) error(E_ARRAYINDEX);
  if (n==3) {
    result=argv[2];
    if (!isbitvector(result)) error(E_BITVECTOR);
    if (s!=vecsize(result)) error(E_ARRAYINDEX);}
  else result=makevector(C_BITVECTOR,s);
  bv1=argv[0]->c.ivec.iv; bv2=argv[1]->c.ivec.iv; rbv=result->c.ivec.iv;
  while (i<(s+WORD_SIZE-1)/WORD_SIZE) {  rbv[i]=bv1[i] ^ bv2[i]; i++;}
  return(result);}

pointer BITEQV(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ pointer result;
  register eusinteger_t *bv1, *bv2, *rbv, s; register long i=0;
  ckarg2(2,3);
  if (!isbitvector(argv[0]) || !isbitvector(argv[1])) error(E_BITVECTOR);
  s=vecsize(argv[0]);
  if (s!=vecsize(argv[1])) error(E_ARRAYINDEX);
  if (n==3) {
    result=argv[2];
    if (!isbitvector(result)) error(E_BITVECTOR);
    if (s!=vecsize(result)) error(E_ARRAYINDEX);}
  else result=makevector(C_BITVECTOR,s);
  bv1=argv[0]->c.ivec.iv; bv2=argv[1]->c.ivec.iv; rbv=result->c.ivec.iv;
  while (i<(s+WORD_SIZE-1)/WORD_SIZE) {  rbv[i]= ~(bv1[i] ^ bv2[i]); i++;}
  return(result);}

pointer BITNAND(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ pointer result;
  register eusinteger_t *bv1, *bv2, *rbv, s; register long i=0;
  ckarg2(2,3);
  if (!isbitvector(argv[0]) || !isbitvector(argv[1])) error(E_BITVECTOR);
  s=vecsize(argv[0]);
  if (s!=vecsize(argv[1])) error(E_ARRAYINDEX);
  if (n==3) {
    result=argv[2];
    if (!isbitvector(result)) error(E_BITVECTOR);
    if (s!=vecsize(result)) error(E_ARRAYINDEX);}
  else result=makevector(C_BITVECTOR,s);
  bv1=argv[0]->c.ivec.iv; bv2=argv[1]->c.ivec.iv; rbv=result->c.ivec.iv;
  while (i<(s+WORD_SIZE-1)/WORD_SIZE) {  rbv[i]= ~(bv1[i] & bv2[i]); i++;}
  return(result);}

pointer BITNOR(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ pointer result;
  register eusinteger_t *bv1, *bv2, *rbv, s; register long i=0;
  ckarg2(2,3);
  if (!isbitvector(argv[0]) || !isbitvector(argv[1])) error(E_BITVECTOR);
  s=vecsize(argv[0]);
  if (s!=vecsize(argv[1])) error(E_ARRAYINDEX);
  if (n==3) {
    result=argv[2];
    if (!isbitvector(result)) error(E_BITVECTOR);
    if (s!=vecsize(result)) error(E_ARRAYINDEX);}
  else result=makevector(C_BITVECTOR,s);
  bv1=argv[0]->c.ivec.iv; bv2=argv[1]->c.ivec.iv; rbv=result->c.ivec.iv;
  while (i<(s+WORD_SIZE-1)/WORD_SIZE) {  rbv[i]= ~(bv1[i] | bv2[i]); i++;}
  return(result);}

pointer BITNOT(ctx,n,argv)
register context *ctx;
register int n;
register pointer argv[];
{ pointer result;
  register eusinteger_t *bv1, *rbv, s; register long i=0;
  ckarg2(1,2);
  if (!isbitvector(argv[0])) error(E_BITVECTOR);
  s=vecsize(argv[0]);
  if (n==2) {
    result=argv[1];
    if (!isbitvector(result)) error(E_BITVECTOR);
    if (s!=vecsize(result)) error(E_ARRAYINDEX);}
  else result=makevector(C_BITVECTOR,s);
  bv1=argv[0]->c.ivec.iv; rbv=result->c.ivec.iv;
  while (i<(s+WORD_SIZE-1)/WORD_SIZE) { rbv[i]= ~bv1[i]; i++;}
  return(result);}

void vectorarray(ctx,mod)
register context *ctx;
pointer mod;
{
  defun(ctx,"AREF",mod,AREF,NULL);
  defun(ctx,"ASET",mod,ASET,NULL);
  defun(ctx,"VECTOR-POP",mod,VECTORPOP,NULL);
  defun(ctx,"VECTOR-PUSH",mod,VECTORPUSH,NULL);
  defun(ctx,"VECTOR-PUSH-EXTEND",mod,VECTOREXPUSH,NULL);
  defun(ctx,"ARRAYP",mod,ARRAYP,NULL);
  defun(ctx,"SVREF",mod,SVREF,NULL);
  defun(ctx,"SVSET",mod,SVSET,NULL);
  defun(ctx,"VECTOR",mod,MKVECTOR,NULL);
  defun(ctx,"VECTORP",mod,VECTORP,NULL);
  defun(ctx,"INTEGER-VECTOR",mod,MKINTVECTOR,NULL);
  defun(ctx,"BIT",mod,BIT,NULL);
  defun(ctx,"SBIT",mod,BIT,NULL);
  defun(ctx,"SETBIT",mod,SETBIT,NULL);
  defun(ctx,"BIT-AND",mod,BITAND,NULL);
  defun(ctx,"BIT-IOR",mod,BITIOR,NULL);
  defun(ctx,"BIT-XOR",mod,BITXOR,NULL);
  defun(ctx,"BIT-EQV",mod,BITEQV,NULL);
  defun(ctx,"BIT-NAND",mod,BITNAND,NULL);
  defun(ctx,"BIT-NOR",mod,BITNOR,NULL);
  defun(ctx,"BIT-NOT",mod,BITNOT,NULL);
  }