1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
|
/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996-2002
* Sleepycat Software. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995, 1996
* Keith Bostic. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: bt_split.c,v 1.1.1.1 2003/11/20 22:13:06 toshok Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <limits.h>
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/db_page.h"
#include "dbinc/db_shash.h"
#include "dbinc/lock.h"
#include "dbinc/btree.h"
static int __bam_broot __P((DBC *, PAGE *, PAGE *, PAGE *));
static int __bam_page __P((DBC *, EPG *, EPG *));
static int __bam_pinsert __P((DBC *, EPG *, PAGE *, PAGE *, int));
static int __bam_psplit __P((DBC *, EPG *, PAGE *, PAGE *, db_indx_t *));
static int __bam_root __P((DBC *, EPG *));
static int __ram_root __P((DBC *, PAGE *, PAGE *, PAGE *));
/*
* __bam_split --
* Split a page.
*
* PUBLIC: int __bam_split __P((DBC *, void *, db_pgno_t *));
*/
int
__bam_split(dbc, arg, root_pgnop)
DBC *dbc;
void *arg;
db_pgno_t *root_pgnop;
{
BTREE_CURSOR *cp;
enum { UP, DOWN } dir;
db_pgno_t root_pgno;
int exact, level, ret;
cp = (BTREE_CURSOR *)dbc->internal;
root_pgno = cp->root;
/*
* The locking protocol we use to avoid deadlock to acquire locks by
* walking down the tree, but we do it as lazily as possible, locking
* the root only as a last resort. We expect all stack pages to have
* been discarded before we're called; we discard all short-term locks.
*
* When __bam_split is first called, we know that a leaf page was too
* full for an insert. We don't know what leaf page it was, but we
* have the key/recno that caused the problem. We call XX_search to
* reacquire the leaf page, but this time get both the leaf page and
* its parent, locked. We then split the leaf page and see if the new
* internal key will fit into the parent page. If it will, we're done.
*
* If it won't, we discard our current locks and repeat the process,
* only this time acquiring the parent page and its parent, locked.
* This process repeats until we succeed in the split, splitting the
* root page as the final resort. The entire process then repeats,
* as necessary, until we split a leaf page.
*
* XXX
* A traditional method of speeding this up is to maintain a stack of
* the pages traversed in the original search. You can detect if the
* stack is correct by storing the page's LSN when it was searched and
* comparing that LSN with the current one when it's locked during the
* split. This would be an easy change for this code, but I have no
* numbers that indicate it's worthwhile.
*/
for (dir = UP, level = LEAFLEVEL;; dir == UP ? ++level : --level) {
/*
* Acquire a page and its parent, locked.
*/
if ((ret = (dbc->dbtype == DB_BTREE ?
__bam_search(dbc, PGNO_INVALID,
arg, S_WRPAIR, level, NULL, &exact) :
__bam_rsearch(dbc,
(db_recno_t *)arg, S_WRPAIR, level, &exact))) != 0)
return (ret);
if (root_pgnop != NULL)
*root_pgnop = cp->csp[0].page->pgno == root_pgno ?
root_pgno : cp->csp[-1].page->pgno;
/*
* Split the page if it still needs it (it's possible another
* thread of control has already split the page). If we are
* guaranteed that two items will fit on the page, the split
* is no longer necessary.
*/
if (2 * B_MAXSIZEONPAGE(cp->ovflsize)
<= (db_indx_t)P_FREESPACE(dbc->dbp, cp->csp[0].page)) {
__bam_stkrel(dbc, STK_NOLOCK);
return (0);
}
ret = cp->csp[0].page->pgno == root_pgno ?
__bam_root(dbc, &cp->csp[0]) :
__bam_page(dbc, &cp->csp[-1], &cp->csp[0]);
BT_STK_CLR(cp);
switch (ret) {
case 0:
/* Once we've split the leaf page, we're done. */
if (level == LEAFLEVEL)
return (0);
/* Switch directions. */
if (dir == UP)
dir = DOWN;
break;
case DB_NEEDSPLIT:
/*
* It's possible to fail to split repeatedly, as other
* threads may be modifying the tree, or the page usage
* is sufficiently bad that we don't get enough space
* the first time.
*/
if (dir == DOWN)
dir = UP;
break;
default:
return (ret);
}
}
/* NOTREACHED */
}
/*
* __bam_root --
* Split the root page of a btree.
*/
static int
__bam_root(dbc, cp)
DBC *dbc;
EPG *cp;
{
DB *dbp;
DBT log_dbt;
DB_LSN log_lsn;
DB_MPOOLFILE *mpf;
PAGE *lp, *rp;
db_indx_t split;
u_int32_t opflags;
int ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
/* Yeah, right. */
if (cp->page->level >= MAXBTREELEVEL) {
__db_err(dbp->dbenv,
"Too many btree levels: %d", cp->page->level);
ret = ENOSPC;
goto err;
}
/* Create new left and right pages for the split. */
lp = rp = NULL;
if ((ret = __db_new(dbc, TYPE(cp->page), &lp)) != 0 ||
(ret = __db_new(dbc, TYPE(cp->page), &rp)) != 0)
goto err;
P_INIT(lp, dbp->pgsize, lp->pgno,
PGNO_INVALID, ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
cp->page->level, TYPE(cp->page));
P_INIT(rp, dbp->pgsize, rp->pgno,
ISINTERNAL(cp->page) ? PGNO_INVALID : lp->pgno, PGNO_INVALID,
cp->page->level, TYPE(cp->page));
/* Split the page. */
if ((ret = __bam_psplit(dbc, cp, lp, rp, &split)) != 0)
goto err;
/* Log the change. */
if (DBC_LOGGING(dbc)) {
memset(&log_dbt, 0, sizeof(log_dbt));
log_dbt.data = cp->page;
log_dbt.size = dbp->pgsize;
ZERO_LSN(log_lsn);
opflags = F_ISSET(
(BTREE_CURSOR *)dbc->internal, C_RECNUM) ? SPL_NRECS : 0;
if ((ret = __bam_split_log(dbp,
dbc->txn, &LSN(cp->page), 0, PGNO(lp), &LSN(lp), PGNO(rp),
&LSN(rp), (u_int32_t)NUM_ENT(lp), 0, &log_lsn,
dbc->internal->root, &log_dbt, opflags)) != 0)
goto err;
} else
LSN_NOT_LOGGED(LSN(cp->page));
LSN(lp) = LSN(cp->page);
LSN(rp) = LSN(cp->page);
/* Clean up the new root page. */
if ((ret = (dbc->dbtype == DB_RECNO ?
__ram_root(dbc, cp->page, lp, rp) :
__bam_broot(dbc, cp->page, lp, rp))) != 0)
goto err;
/* Adjust any cursors. */
if ((ret = __bam_ca_split(dbc,
cp->page->pgno, lp->pgno, rp->pgno, split, 1)) != 0)
goto err;
/* Success -- write the real pages back to the store. */
(void)mpf->put(mpf, cp->page, DB_MPOOL_DIRTY);
(void)__TLPUT(dbc, cp->lock);
(void)mpf->put(mpf, lp, DB_MPOOL_DIRTY);
(void)mpf->put(mpf, rp, DB_MPOOL_DIRTY);
return (0);
err: if (lp != NULL)
(void)mpf->put(mpf, lp, 0);
if (rp != NULL)
(void)mpf->put(mpf, rp, 0);
(void)mpf->put(mpf, cp->page, 0);
(void)__TLPUT(dbc, cp->lock);
return (ret);
}
/*
* __bam_page --
* Split the non-root page of a btree.
*/
static int
__bam_page(dbc, pp, cp)
DBC *dbc;
EPG *pp, *cp;
{
BTREE_CURSOR *bc;
DBT log_dbt;
DB_LSN log_lsn;
DB *dbp;
DB_LOCK rplock, tplock;
DB_MPOOLFILE *mpf;
DB_LSN save_lsn;
PAGE *lp, *rp, *alloc_rp, *tp;
db_indx_t split;
u_int32_t opflags;
int ret, t_ret;
dbp = dbc->dbp;
mpf = dbp->mpf;
alloc_rp = lp = rp = tp = NULL;
LOCK_INIT(rplock);
LOCK_INIT(tplock);
ret = -1;
/*
* Create a new right page for the split, and fill in everything
* except its LSN and page number.
*
* We malloc space for both the left and right pages, so we don't get
* a new page from the underlying buffer pool until we know the split
* is going to succeed. The reason is that we can't release locks
* acquired during the get-a-new-page process because metadata page
* locks can't be discarded on failure since we may have modified the
* free list. So, if you assume that we're holding a write lock on the
* leaf page which ran out of space and started this split (e.g., we
* have already written records to the page, or we retrieved a record
* from it with the DB_RMW flag set), failing in a split with both a
* leaf page locked and the metadata page locked can potentially lock
* up the tree badly, because we've violated the rule of always locking
* down the tree, and never up.
*/
if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &rp)) != 0)
goto err;
P_INIT(rp, dbp->pgsize, 0,
ISINTERNAL(cp->page) ? PGNO_INVALID : PGNO(cp->page),
ISINTERNAL(cp->page) ? PGNO_INVALID : NEXT_PGNO(cp->page),
cp->page->level, TYPE(cp->page));
/*
* Create new left page for the split, and fill in everything
* except its LSN and next-page page number.
*/
if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &lp)) != 0)
goto err;
P_INIT(lp, dbp->pgsize, PGNO(cp->page),
ISINTERNAL(cp->page) ? PGNO_INVALID : PREV_PGNO(cp->page),
ISINTERNAL(cp->page) ? PGNO_INVALID : 0,
cp->page->level, TYPE(cp->page));
/*
* Split right.
*
* Only the indices are sorted on the page, i.e., the key/data pairs
* aren't, so it's simpler to copy the data from the split page onto
* two new pages instead of copying half the data to a new right page
* and compacting the left page in place. Since the left page can't
* change, we swap the original and the allocated left page after the
* split.
*/
if ((ret = __bam_psplit(dbc, cp, lp, rp, &split)) != 0)
goto err;
/*
* Test to see if we are going to be able to insert the new pages into
* the parent page. The interesting failure here is that the parent
* page can't hold the new keys, and has to be split in turn, in which
* case we want to release all the locks we can.
*/
if ((ret = __bam_pinsert(dbc, pp, lp, rp, 1)) != 0)
goto err;
/*
* Fix up the previous pointer of any leaf page following the split
* page.
*
* There's interesting deadlock situations here as we try to write-lock
* a page that's not in our direct ancestry. Consider a cursor walking
* backward through the leaf pages, that has our following page locked,
* and is waiting on a lock for the page we're splitting. In that case
* we're going to deadlock here . It's probably OK, stepping backward
* through the tree isn't a common operation.
*/
if (ISLEAF(cp->page) && NEXT_PGNO(cp->page) != PGNO_INVALID) {
if ((ret = __db_lget(dbc,
0, NEXT_PGNO(cp->page), DB_LOCK_WRITE, 0, &tplock)) != 0)
goto err;
if ((ret = mpf->get(mpf, &NEXT_PGNO(cp->page), 0, &tp)) != 0)
goto err;
}
/*
* We've got everything locked down we need, and we know the split
* is going to succeed. Go and get the additional page we'll need.
*/
if ((ret = __db_new(dbc, TYPE(cp->page), &alloc_rp)) != 0)
goto err;
/*
* Lock the new page. We need to do this because someone
* could get here through bt_lpgno if this page was recently
* dealocated. They can't look at it before we commit.
*/
if ((ret = __db_lget(dbc,
0, PGNO(alloc_rp), DB_LOCK_WRITE, 0, &rplock)) != 0)
goto err;
/*
* Fix up the page numbers we didn't have before. We have to do this
* before calling __bam_pinsert because it may copy a page number onto
* the parent page and it takes the page number from its page argument.
*/
PGNO(rp) = NEXT_PGNO(lp) = PGNO(alloc_rp);
/* Actually update the parent page. */
if ((ret = __bam_pinsert(dbc, pp, lp, rp, 0)) != 0)
goto err;
bc = (BTREE_CURSOR *)dbc->internal;
/* Log the change. */
if (DBC_LOGGING(dbc)) {
memset(&log_dbt, 0, sizeof(log_dbt));
log_dbt.data = cp->page;
log_dbt.size = dbp->pgsize;
if (tp == NULL)
ZERO_LSN(log_lsn);
opflags = F_ISSET(bc, C_RECNUM) ? SPL_NRECS : 0;
if ((ret = __bam_split_log(dbp, dbc->txn, &LSN(cp->page), 0,
PGNO(cp->page), &LSN(cp->page), PGNO(alloc_rp),
&LSN(alloc_rp), (u_int32_t)NUM_ENT(lp),
tp == NULL ? 0 : PGNO(tp),
tp == NULL ? &log_lsn : &LSN(tp),
PGNO_INVALID, &log_dbt, opflags)) != 0)
goto err;
} else
LSN_NOT_LOGGED(LSN(cp->page));
/* Update the LSNs for all involved pages. */
LSN(alloc_rp) = LSN(cp->page);
LSN(lp) = LSN(cp->page);
LSN(rp) = LSN(cp->page);
if (tp != NULL)
LSN(tp) = LSN(cp->page);
/*
* Copy the left and right pages into place. There are two paths
* through here. Either we are logging and we set the LSNs in the
* logging path. However, if we are not logging, then we do not
* have valid LSNs on lp or rp. The correct LSNs to use are the
* ones on the page we got from __db_new or the one that was
* originally on cp->page. In both cases, we save the LSN from the
* real database page (not a malloc'd one) and reapply it after we
* do the copy.
*/
save_lsn = alloc_rp->lsn;
memcpy(alloc_rp, rp, LOFFSET(dbp, rp));
memcpy((u_int8_t *)alloc_rp + HOFFSET(rp),
(u_int8_t *)rp + HOFFSET(rp), dbp->pgsize - HOFFSET(rp));
alloc_rp->lsn = save_lsn;
save_lsn = cp->page->lsn;
memcpy(cp->page, lp, LOFFSET(dbp, lp));
memcpy((u_int8_t *)cp->page + HOFFSET(lp),
(u_int8_t *)lp + HOFFSET(lp), dbp->pgsize - HOFFSET(lp));
cp->page->lsn = save_lsn;
/* Fix up the next-page link. */
if (tp != NULL)
PREV_PGNO(tp) = PGNO(rp);
/* Adjust any cursors. */
if ((ret = __bam_ca_split(dbc,
PGNO(cp->page), PGNO(cp->page), PGNO(rp), split, 0)) != 0)
goto err;
__os_free(dbp->dbenv, lp);
__os_free(dbp->dbenv, rp);
/*
* Success -- write the real pages back to the store. As we never
* acquired any sort of lock on the new page, we release it before
* releasing locks on the pages that reference it. We're finished
* modifying the page so it's not really necessary, but it's neater.
*/
if ((t_ret = mpf->put(mpf, alloc_rp, DB_MPOOL_DIRTY)) != 0 && ret == 0)
ret = t_ret;
(void)__TLPUT(dbc, rplock);
if ((t_ret = mpf->put(mpf, pp->page, DB_MPOOL_DIRTY)) != 0 && ret == 0)
ret = t_ret;
(void)__TLPUT(dbc, pp->lock);
if ((t_ret = mpf->put(mpf, cp->page, DB_MPOOL_DIRTY)) != 0 && ret == 0)
ret = t_ret;
(void)__TLPUT(dbc, cp->lock);
if (tp != NULL) {
if ((t_ret =
mpf->put(mpf, tp, DB_MPOOL_DIRTY)) != 0 && ret == 0)
ret = t_ret;
(void)__TLPUT(dbc, tplock);
}
return (ret);
err: if (lp != NULL)
__os_free(dbp->dbenv, lp);
if (rp != NULL)
__os_free(dbp->dbenv, rp);
if (alloc_rp != NULL)
(void)mpf->put(mpf, alloc_rp, 0);
if (tp != NULL)
(void)mpf->put(mpf, tp, 0);
/* We never updated the new or next pages, we can release them. */
(void)__LPUT(dbc, rplock);
(void)__LPUT(dbc, tplock);
(void)mpf->put(mpf, pp->page, 0);
if (ret == DB_NEEDSPLIT)
(void)__LPUT(dbc, pp->lock);
else
(void)__TLPUT(dbc, pp->lock);
(void)mpf->put(mpf, cp->page, 0);
if (ret == DB_NEEDSPLIT)
(void)__LPUT(dbc, cp->lock);
else
(void)__TLPUT(dbc, cp->lock);
return (ret);
}
/*
* __bam_broot --
* Fix up the btree root page after it has been split.
*/
static int
__bam_broot(dbc, rootp, lp, rp)
DBC *dbc;
PAGE *rootp, *lp, *rp;
{
BINTERNAL bi, *child_bi;
BKEYDATA *child_bk;
BTREE_CURSOR *cp;
DB *dbp;
DBT hdr, data;
db_pgno_t root_pgno;
int ret;
dbp = dbc->dbp;
cp = (BTREE_CURSOR *)dbc->internal;
/*
* If the root page was a leaf page, change it into an internal page.
* We copy the key we split on (but not the key's data, in the case of
* a leaf page) to the new root page.
*/
root_pgno = cp->root;
P_INIT(rootp, dbp->pgsize,
root_pgno, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IBTREE);
memset(&data, 0, sizeof(data));
memset(&hdr, 0, sizeof(hdr));
/*
* The btree comparison code guarantees that the left-most key on any
* internal btree page is never used, so it doesn't need to be filled
* in. Set the record count if necessary.
*/
memset(&bi, 0, sizeof(bi));
bi.len = 0;
B_TSET(bi.type, B_KEYDATA, 0);
bi.pgno = lp->pgno;
if (F_ISSET(cp, C_RECNUM)) {
bi.nrecs = __bam_total(dbp, lp);
RE_NREC_SET(rootp, bi.nrecs);
}
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
if ((ret =
__db_pitem(dbc, rootp, 0, BINTERNAL_SIZE(0), &hdr, NULL)) != 0)
return (ret);
switch (TYPE(rp)) {
case P_IBTREE:
/* Copy the first key of the child page onto the root page. */
child_bi = GET_BINTERNAL(dbp, rp, 0);
bi.len = child_bi->len;
B_TSET(bi.type, child_bi->type, 0);
bi.pgno = rp->pgno;
if (F_ISSET(cp, C_RECNUM)) {
bi.nrecs = __bam_total(dbp, rp);
RE_NREC_ADJ(rootp, bi.nrecs);
}
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
data.data = child_bi->data;
data.size = child_bi->len;
if ((ret = __db_pitem(dbc, rootp, 1,
BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (B_TYPE(child_bi->type) == B_OVERFLOW)
if ((ret = __db_ovref(dbc,
((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
return (ret);
break;
case P_LDUP:
case P_LBTREE:
/* Copy the first key of the child page onto the root page. */
child_bk = GET_BKEYDATA(dbp, rp, 0);
switch (B_TYPE(child_bk->type)) {
case B_KEYDATA:
bi.len = child_bk->len;
B_TSET(bi.type, child_bk->type, 0);
bi.pgno = rp->pgno;
if (F_ISSET(cp, C_RECNUM)) {
bi.nrecs = __bam_total(dbp, rp);
RE_NREC_ADJ(rootp, bi.nrecs);
}
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
data.data = child_bk->data;
data.size = child_bk->len;
if ((ret = __db_pitem(dbc, rootp, 1,
BINTERNAL_SIZE(child_bk->len), &hdr, &data)) != 0)
return (ret);
break;
case B_DUPLICATE:
case B_OVERFLOW:
bi.len = BOVERFLOW_SIZE;
B_TSET(bi.type, child_bk->type, 0);
bi.pgno = rp->pgno;
if (F_ISSET(cp, C_RECNUM)) {
bi.nrecs = __bam_total(dbp, rp);
RE_NREC_ADJ(rootp, bi.nrecs);
}
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
data.data = child_bk;
data.size = BOVERFLOW_SIZE;
if ((ret = __db_pitem(dbc, rootp, 1,
BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (B_TYPE(child_bk->type) == B_OVERFLOW)
if ((ret = __db_ovref(dbc,
((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
return (ret);
break;
default:
return (__db_pgfmt(dbp->dbenv, rp->pgno));
}
break;
default:
return (__db_pgfmt(dbp->dbenv, rp->pgno));
}
return (0);
}
/*
* __ram_root --
* Fix up the recno root page after it has been split.
*/
static int
__ram_root(dbc, rootp, lp, rp)
DBC *dbc;
PAGE *rootp, *lp, *rp;
{
DB *dbp;
DBT hdr;
RINTERNAL ri;
db_pgno_t root_pgno;
int ret;
dbp = dbc->dbp;
root_pgno = dbc->internal->root;
/* Initialize the page. */
P_INIT(rootp, dbp->pgsize,
root_pgno, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IRECNO);
/* Initialize the header. */
memset(&hdr, 0, sizeof(hdr));
hdr.data = &ri;
hdr.size = RINTERNAL_SIZE;
/* Insert the left and right keys, set the header information. */
ri.pgno = lp->pgno;
ri.nrecs = __bam_total(dbp, lp);
if ((ret = __db_pitem(dbc, rootp, 0, RINTERNAL_SIZE, &hdr, NULL)) != 0)
return (ret);
RE_NREC_SET(rootp, ri.nrecs);
ri.pgno = rp->pgno;
ri.nrecs = __bam_total(dbp, rp);
if ((ret = __db_pitem(dbc, rootp, 1, RINTERNAL_SIZE, &hdr, NULL)) != 0)
return (ret);
RE_NREC_ADJ(rootp, ri.nrecs);
return (0);
}
/*
* __bam_pinsert --
* Insert a new key into a parent page, completing the split.
*/
static int
__bam_pinsert(dbc, parent, lchild, rchild, space_check)
DBC *dbc;
EPG *parent;
PAGE *lchild, *rchild;
int space_check;
{
BINTERNAL bi, *child_bi;
BKEYDATA *child_bk, *tmp_bk;
BTREE *t;
BTREE_CURSOR *cp;
DB *dbp;
DBT a, b, hdr, data;
PAGE *ppage;
RINTERNAL ri;
db_indx_t off;
db_recno_t nrecs;
size_t (*func) __P((DB *, const DBT *, const DBT *));
u_int32_t n, nbytes, nksize;
int ret;
dbp = dbc->dbp;
cp = (BTREE_CURSOR *)dbc->internal;
t = dbp->bt_internal;
ppage = parent->page;
/* If handling record numbers, count records split to the right page. */
nrecs = F_ISSET(cp, C_RECNUM) &&
!space_check ? __bam_total(dbp, rchild) : 0;
/*
* Now we insert the new page's first key into the parent page, which
* completes the split. The parent points to a PAGE and a page index
* offset, where the new key goes ONE AFTER the index, because we split
* to the right.
*
* XXX
* Some btree algorithms replace the key for the old page as well as
* the new page. We don't, as there's no reason to believe that the
* first key on the old page is any better than the key we have, and,
* in the case of a key being placed at index 0 causing the split, the
* key is unavailable.
*/
off = parent->indx + O_INDX;
/*
* Calculate the space needed on the parent page.
*
* Prefix trees: space hack used when inserting into BINTERNAL pages.
* Retain only what's needed to distinguish between the new entry and
* the LAST entry on the page to its left. If the keys compare equal,
* retain the entire key. We ignore overflow keys, and the entire key
* must be retained for the next-to-leftmost key on the leftmost page
* of each level, or the search will fail. Applicable ONLY to internal
* pages that have leaf pages as children. Further reduction of the
* key between pairs of internal pages loses too much information.
*/
switch (TYPE(rchild)) {
case P_IBTREE:
child_bi = GET_BINTERNAL(dbp, rchild, 0);
nbytes = BINTERNAL_PSIZE(child_bi->len);
if (P_FREESPACE(dbp, ppage) < nbytes)
return (DB_NEEDSPLIT);
if (space_check)
return (0);
/* Add a new record for the right page. */
memset(&bi, 0, sizeof(bi));
bi.len = child_bi->len;
B_TSET(bi.type, child_bi->type, 0);
bi.pgno = rchild->pgno;
bi.nrecs = nrecs;
memset(&hdr, 0, sizeof(hdr));
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
memset(&data, 0, sizeof(data));
data.data = child_bi->data;
data.size = child_bi->len;
if ((ret = __db_pitem(dbc, ppage, off,
BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (B_TYPE(child_bi->type) == B_OVERFLOW)
if ((ret = __db_ovref(dbc,
((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0)
return (ret);
break;
case P_LDUP:
case P_LBTREE:
child_bk = GET_BKEYDATA(dbp, rchild, 0);
switch (B_TYPE(child_bk->type)) {
case B_KEYDATA:
/*
* We set t->bt_prefix to NULL if we have a comparison
* callback but no prefix compression callback. But,
* if we're splitting in an off-page duplicates tree,
* we still have to do some checking. If using the
* default off-page duplicates comparison routine we
* can use the default prefix compression callback. If
* not using the default off-page duplicates comparison
* routine, we can't do any kind of prefix compression
* as there's no way for an application to specify a
* prefix compression callback that corresponds to its
* comparison callback.
*/
if (F_ISSET(dbc, DBC_OPD)) {
if (dbp->dup_compare == __bam_defcmp)
func = __bam_defpfx;
else
func = NULL;
} else
func = t->bt_prefix;
nbytes = BINTERNAL_PSIZE(child_bk->len);
nksize = child_bk->len;
if (func == NULL)
goto noprefix;
if (ppage->prev_pgno == PGNO_INVALID && off <= 1)
goto noprefix;
tmp_bk = GET_BKEYDATA(dbp, lchild, NUM_ENT(lchild) -
(TYPE(lchild) == P_LDUP ? O_INDX : P_INDX));
if (B_TYPE(tmp_bk->type) != B_KEYDATA)
goto noprefix;
memset(&a, 0, sizeof(a));
a.size = tmp_bk->len;
a.data = tmp_bk->data;
memset(&b, 0, sizeof(b));
b.size = child_bk->len;
b.data = child_bk->data;
nksize = (u_int32_t)func(dbp, &a, &b);
if ((n = BINTERNAL_PSIZE(nksize)) < nbytes)
nbytes = n;
else
noprefix: nksize = child_bk->len;
if (P_FREESPACE(dbp, ppage) < nbytes)
return (DB_NEEDSPLIT);
if (space_check)
return (0);
memset(&bi, 0, sizeof(bi));
bi.len = nksize;
B_TSET(bi.type, child_bk->type, 0);
bi.pgno = rchild->pgno;
bi.nrecs = nrecs;
memset(&hdr, 0, sizeof(hdr));
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
memset(&data, 0, sizeof(data));
data.data = child_bk->data;
data.size = nksize;
if ((ret = __db_pitem(dbc, ppage, off,
BINTERNAL_SIZE(nksize), &hdr, &data)) != 0)
return (ret);
break;
case B_DUPLICATE:
case B_OVERFLOW:
nbytes = BINTERNAL_PSIZE(BOVERFLOW_SIZE);
if (P_FREESPACE(dbp, ppage) < nbytes)
return (DB_NEEDSPLIT);
if (space_check)
return (0);
memset(&bi, 0, sizeof(bi));
bi.len = BOVERFLOW_SIZE;
B_TSET(bi.type, child_bk->type, 0);
bi.pgno = rchild->pgno;
bi.nrecs = nrecs;
memset(&hdr, 0, sizeof(hdr));
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
memset(&data, 0, sizeof(data));
data.data = child_bk;
data.size = BOVERFLOW_SIZE;
if ((ret = __db_pitem(dbc, ppage, off,
BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (B_TYPE(child_bk->type) == B_OVERFLOW)
if ((ret = __db_ovref(dbc,
((BOVERFLOW *)child_bk)->pgno, 1)) != 0)
return (ret);
break;
default:
return (__db_pgfmt(dbp->dbenv, rchild->pgno));
}
break;
case P_IRECNO:
case P_LRECNO:
nbytes = RINTERNAL_PSIZE;
if (P_FREESPACE(dbp, ppage) < nbytes)
return (DB_NEEDSPLIT);
if (space_check)
return (0);
/* Add a new record for the right page. */
memset(&hdr, 0, sizeof(hdr));
hdr.data = &ri;
hdr.size = RINTERNAL_SIZE;
ri.pgno = rchild->pgno;
ri.nrecs = nrecs;
if ((ret = __db_pitem(dbc,
ppage, off, RINTERNAL_SIZE, &hdr, NULL)) != 0)
return (ret);
break;
default:
return (__db_pgfmt(dbp->dbenv, rchild->pgno));
}
/*
* If a Recno or Btree with record numbers AM page, or an off-page
* duplicates tree, adjust the parent page's left page record count.
*/
if (F_ISSET(cp, C_RECNUM)) {
/* Log the change. */
if (DBC_LOGGING(dbc)) {
if ((ret = __bam_cadjust_log(dbp, dbc->txn,
&LSN(ppage), 0, PGNO(ppage),
&LSN(ppage), parent->indx, -(int32_t)nrecs, 0)) != 0)
return (ret);
} else
LSN_NOT_LOGGED(LSN(ppage));
/* Update the left page count. */
if (dbc->dbtype == DB_RECNO)
GET_RINTERNAL(dbp, ppage, parent->indx)->nrecs -= nrecs;
else
GET_BINTERNAL(dbp, ppage, parent->indx)->nrecs -= nrecs;
}
return (0);
}
/*
* __bam_psplit --
* Do the real work of splitting the page.
*/
static int
__bam_psplit(dbc, cp, lp, rp, splitret)
DBC *dbc;
EPG *cp;
PAGE *lp, *rp;
db_indx_t *splitret;
{
DB *dbp;
PAGE *pp;
db_indx_t half, *inp, nbytes, off, splitp, top;
int adjust, cnt, iflag, isbigkey, ret;
dbp = dbc->dbp;
pp = cp->page;
inp = P_INP(dbp, pp);
adjust = TYPE(pp) == P_LBTREE ? P_INDX : O_INDX;
/*
* If we're splitting the first (last) page on a level because we're
* inserting (appending) a key to it, it's likely that the data is
* sorted. Moving a single item to the new page is less work and can
* push the fill factor higher than normal. This is trivial when we
* are splitting a new page before the beginning of the tree, all of
* the interesting tests are against values of 0.
*
* Catching appends to the tree is harder. In a simple append, we're
* inserting an item that sorts past the end of the tree; the cursor
* will point past the last element on the page. But, in trees with
* duplicates, the cursor may point to the last entry on the page --
* in this case, the entry will also be the last element of a duplicate
* set (the last because the search call specified the S_DUPLAST flag).
* The only way to differentiate between an insert immediately before
* the last item in a tree or an append after a duplicate set which is
* also the last item in the tree is to call the comparison function.
* When splitting internal pages during an append, the search code
* guarantees the cursor always points to the largest page item less
* than the new internal entry. To summarize, we want to catch three
* possible index values:
*
* NUM_ENT(page) Btree/Recno leaf insert past end-of-tree
* NUM_ENT(page) - O_INDX Btree or Recno internal insert past EOT
* NUM_ENT(page) - P_INDX Btree leaf insert past EOT after a set
* of duplicates
*
* two of which, (NUM_ENT(page) - O_INDX or P_INDX) might be an insert
* near the end of the tree, and not after the end of the tree at all.
* Do a simple test which might be wrong because calling the comparison
* functions is expensive. Regardless, it's not a big deal if we're
* wrong, we'll do the split the right way next time.
*/
off = 0;
if (NEXT_PGNO(pp) == PGNO_INVALID && cp->indx >= NUM_ENT(pp) - adjust)
off = NUM_ENT(pp) - adjust;
else if (PREV_PGNO(pp) == PGNO_INVALID && cp->indx == 0)
off = adjust;
if (off != 0)
goto sort;
/*
* Split the data to the left and right pages. Try not to split on
* an overflow key. (Overflow keys on internal pages will slow down
* searches.) Refuse to split in the middle of a set of duplicates.
*
* First, find the optimum place to split.
*
* It's possible to try and split past the last record on the page if
* there's a very large record at the end of the page. Make sure this
* doesn't happen by bounding the check at the next-to-last entry on
* the page.
*
* Note, we try and split half the data present on the page. This is
* because another process may have already split the page and left
* it half empty. We don't try and skip the split -- we don't know
* how much space we're going to need on the page, and we may need up
* to half the page for a big item, so there's no easy test to decide
* if we need to split or not. Besides, if two threads are inserting
* data into the same place in the database, we're probably going to
* need more space soon anyway.
*/
top = NUM_ENT(pp) - adjust;
half = (dbp->pgsize - HOFFSET(pp)) / 2;
for (nbytes = 0, off = 0; off < top && nbytes < half; ++off)
switch (TYPE(pp)) {
case P_IBTREE:
if (B_TYPE(
GET_BINTERNAL(dbp, pp, off)->type) == B_KEYDATA)
nbytes += BINTERNAL_SIZE(
GET_BINTERNAL(dbp, pp, off)->len);
else
nbytes += BINTERNAL_SIZE(BOVERFLOW_SIZE);
break;
case P_LBTREE:
if (B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) ==
B_KEYDATA)
nbytes += BKEYDATA_SIZE(GET_BKEYDATA(dbp,
pp, off)->len);
else
nbytes += BOVERFLOW_SIZE;
++off;
/* FALLTHROUGH */
case P_LDUP:
case P_LRECNO:
if (B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) ==
B_KEYDATA)
nbytes += BKEYDATA_SIZE(GET_BKEYDATA(dbp,
pp, off)->len);
else
nbytes += BOVERFLOW_SIZE;
break;
case P_IRECNO:
nbytes += RINTERNAL_SIZE;
break;
default:
return (__db_pgfmt(dbp->dbenv, pp->pgno));
}
sort: splitp = off;
/*
* Splitp is either at or just past the optimum split point. If the
* tree type is such that we're going to promote a key to an internal
* page, and our current choice is an overflow key, look for something
* close by that's smaller.
*/
switch (TYPE(pp)) {
case P_IBTREE:
iflag = 1;
isbigkey =
B_TYPE(GET_BINTERNAL(dbp, pp, off)->type) != B_KEYDATA;
break;
case P_LBTREE:
case P_LDUP:
iflag = 0;
isbigkey = B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) !=
B_KEYDATA;
break;
default:
iflag = isbigkey = 0;
}
if (isbigkey)
for (cnt = 1; cnt <= 3; ++cnt) {
off = splitp + cnt * adjust;
if (off < (db_indx_t)NUM_ENT(pp) &&
((iflag && B_TYPE(
GET_BINTERNAL(dbp, pp,off)->type) == B_KEYDATA) ||
B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) ==
B_KEYDATA)) {
splitp = off;
break;
}
if (splitp <= (db_indx_t)(cnt * adjust))
continue;
off = splitp - cnt * adjust;
if (iflag ? B_TYPE(
GET_BINTERNAL(dbp, pp, off)->type) == B_KEYDATA :
B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) ==
B_KEYDATA) {
splitp = off;
break;
}
}
/*
* We can't split in the middle a set of duplicates. We know that
* no duplicate set can take up more than about 25% of the page,
* because that's the point where we push it off onto a duplicate
* page set. So, this loop can't be unbounded.
*/
if (TYPE(pp) == P_LBTREE &&
inp[splitp] == inp[splitp - adjust])
for (cnt = 1;; ++cnt) {
off = splitp + cnt * adjust;
if (off < NUM_ENT(pp) &&
inp[splitp] != inp[off]) {
splitp = off;
break;
}
if (splitp <= (db_indx_t)(cnt * adjust))
continue;
off = splitp - cnt * adjust;
if (inp[splitp] != inp[off]) {
splitp = off + adjust;
break;
}
}
/* We're going to split at splitp. */
if ((ret = __bam_copy(dbp, pp, lp, 0, splitp)) != 0)
return (ret);
if ((ret = __bam_copy(dbp, pp, rp, splitp, NUM_ENT(pp))) != 0)
return (ret);
*splitret = splitp;
return (0);
}
/*
* __bam_copy --
* Copy a set of records from one page to another.
*
* PUBLIC: int __bam_copy __P((DB *, PAGE *, PAGE *, u_int32_t, u_int32_t));
*/
int
__bam_copy(dbp, pp, cp, nxt, stop)
DB *dbp;
PAGE *pp, *cp;
u_int32_t nxt, stop;
{
db_indx_t *cinp, nbytes, off, *pinp;
cinp = P_INP(dbp, cp);
pinp = P_INP(dbp, pp);
/*
* Nxt is the offset of the next record to be placed on the target page.
*/
for (off = 0; nxt < stop; ++nxt, ++NUM_ENT(cp), ++off) {
switch (TYPE(pp)) {
case P_IBTREE:
if (B_TYPE(
GET_BINTERNAL(dbp, pp, nxt)->type) == B_KEYDATA)
nbytes = BINTERNAL_SIZE(
GET_BINTERNAL(dbp, pp, nxt)->len);
else
nbytes = BINTERNAL_SIZE(BOVERFLOW_SIZE);
break;
case P_LBTREE:
/*
* If we're on a key and it's a duplicate, just copy
* the offset.
*/
if (off != 0 && (nxt % P_INDX) == 0 &&
pinp[nxt] == pinp[nxt - P_INDX]) {
cinp[off] = cinp[off - P_INDX];
continue;
}
/* FALLTHROUGH */
case P_LDUP:
case P_LRECNO:
if (B_TYPE(GET_BKEYDATA(dbp, pp, nxt)->type) ==
B_KEYDATA)
nbytes = BKEYDATA_SIZE(GET_BKEYDATA(dbp,
pp, nxt)->len);
else
nbytes = BOVERFLOW_SIZE;
break;
case P_IRECNO:
nbytes = RINTERNAL_SIZE;
break;
default:
return (__db_pgfmt(dbp->dbenv, pp->pgno));
}
cinp[off] = HOFFSET(cp) -= nbytes;
memcpy(P_ENTRY(dbp, cp, off), P_ENTRY(dbp, pp, nxt), nbytes);
}
return (0);
}
|