1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 2001-2002
* Sleepycat Software. All rights reserved.
*
* Some parts of this code originally written by Adam Stubblefield,
* astubble@rice.edu.
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: hmac.c,v 1.1.1.1 2003/11/20 22:13:32 toshok Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/crypto.h"
#include "dbinc/db_page.h" /* for hash.h only */
#include "dbinc/hash.h"
#include "dbinc/hmac.h"
#define HMAC_OUTPUT_SIZE 20
#define HMAC_BLOCK_SIZE 64
static void __db_hmac __P((u_int8_t *, u_int8_t *, size_t, u_int8_t *));
/*
* !!!
* All of these functions use a ctx structure on the stack. The __db_SHA1Init
* call does not initialize the 64-byte buffer portion of it. The
* underlying SHA1 functions will properly pad the buffer if the data length
* is less than 64-bytes, so there isn't a chance of reading uninitialized
* memory. Although it would be cleaner to do a memset(ctx.buffer, 0, 64)
* we do not want to incur that penalty if we don't have to for performance.
*/
/*
* __db_hmac --
* Do a hashed MAC.
*/
static void
__db_hmac(k, data, data_len, mac)
u_int8_t *k, *data, *mac;
size_t data_len;
{
SHA1_CTX ctx;
u_int8_t key[HMAC_BLOCK_SIZE];
u_int8_t ipad[HMAC_BLOCK_SIZE];
u_int8_t opad[HMAC_BLOCK_SIZE];
u_int8_t tmp[HMAC_OUTPUT_SIZE];
int i;
memset(key, 0x00, HMAC_BLOCK_SIZE);
memset(ipad, 0x36, HMAC_BLOCK_SIZE);
memset(opad, 0x5C, HMAC_BLOCK_SIZE);
memcpy(key, k, HMAC_OUTPUT_SIZE);
for (i = 0; i < HMAC_BLOCK_SIZE; i++) {
ipad[i] ^= key[i];
opad[i] ^= key[i];
}
__db_SHA1Init(&ctx);
__db_SHA1Update(&ctx, ipad, HMAC_BLOCK_SIZE);
__db_SHA1Update(&ctx, data, data_len);
__db_SHA1Final(tmp, &ctx);
__db_SHA1Init(&ctx);
__db_SHA1Update(&ctx, opad, HMAC_BLOCK_SIZE);
__db_SHA1Update(&ctx, tmp, HMAC_OUTPUT_SIZE);
__db_SHA1Final(mac, &ctx);
return;
}
/*
* __db_chksum --
* Create a MAC/SHA1 checksum.
*
* PUBLIC: void __db_chksum __P((u_int8_t *, size_t, u_int8_t *, u_int8_t *));
*/
void
__db_chksum(data, data_len, mac_key, store)
u_int8_t *data;
size_t data_len;
u_int8_t *mac_key;
u_int8_t *store;
{
int sumlen;
u_int32_t hash4;
u_int8_t tmp[DB_MAC_KEY];
/*
* Since the checksum might be on a page of data we are checksumming
* we might be overwriting after checksumming, we zero-out the
* checksum value so that we can have a known value there when
* we verify the checksum.
*/
if (mac_key == NULL)
sumlen = sizeof(u_int32_t);
else
sumlen = DB_MAC_KEY;
memset(store, 0, sumlen);
if (mac_key == NULL) {
/* Just a hash, no MAC */
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
memcpy(store, &hash4, sumlen);
} else {
memset(tmp, 0, DB_MAC_KEY);
__db_hmac(mac_key, data, data_len, tmp);
memcpy(store, tmp, sumlen);
}
return;
}
/*
* __db_derive_mac --
* Create a MAC/SHA1 key.
*
* PUBLIC: void __db_derive_mac __P((u_int8_t *, size_t, u_int8_t *));
*/
void
__db_derive_mac(passwd, plen, mac_key)
u_int8_t *passwd;
size_t plen;
u_int8_t *mac_key;
{
SHA1_CTX ctx;
/* Compute the MAC key. mac_key must be 20 bytes. */
__db_SHA1Init(&ctx);
__db_SHA1Update(&ctx, passwd, plen);
__db_SHA1Update(&ctx, (u_int8_t *)DB_MAC_MAGIC, strlen(DB_MAC_MAGIC));
__db_SHA1Update(&ctx, passwd, plen);
__db_SHA1Final(mac_key, &ctx);
return;
}
/*
* __db_check_chksum --
* Verify a checksum.
*
* Return 0 on success, >0 (errno) on error, -1 on checksum mismatch.
*
* PUBLIC: int __db_check_chksum __P((DB_ENV *,
* PUBLIC: DB_CIPHER *, u_int8_t *, void *, size_t, int));
*/
int
__db_check_chksum(dbenv, db_cipher, chksum, data, data_len, is_hmac)
DB_ENV *dbenv;
DB_CIPHER *db_cipher;
u_int8_t *chksum;
void *data;
size_t data_len;
int is_hmac;
{
int ret;
size_t sum_len;
u_int32_t hash4;
u_int8_t *mac_key, old[DB_MAC_KEY], new[DB_MAC_KEY];
/*
* If we are just doing checksumming and not encryption, then checksum
* is 4 bytes. Otherwise, it is DB_MAC_KEY size. Check for illegal
* combinations of crypto/non-crypto checksums.
*/
if (is_hmac == 0) {
if (db_cipher != NULL) {
__db_err(dbenv,
"Unencrypted checksum with a supplied encryption key");
return (EINVAL);
}
sum_len = sizeof(u_int32_t);
mac_key = NULL;
} else {
if (db_cipher == NULL) {
__db_err(dbenv,
"Encrypted checksum: no encryption key specified");
return (EINVAL);
}
sum_len = DB_MAC_KEY;
mac_key = db_cipher->mac_key;
}
/*
* !!!
* Since the checksum might be on the page, we need to have known data
* there so that we can generate the same original checksum. We zero
* it out, just like we do in __db_chksum above.
*/
memcpy(old, chksum, sum_len);
memset(chksum, 0, sum_len);
if (mac_key == NULL) {
/* Just a hash, no MAC */
hash4 = __ham_func4(NULL, data, (u_int32_t)data_len);
ret = memcmp((u_int32_t *)old, &hash4, sum_len) ? -1 : 0;
} else {
__db_hmac(mac_key, data, data_len, new);
ret = memcmp(old, new, sum_len) ? -1 : 0;
}
return (ret);
}
|