1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996-2002
* Sleepycat Software. All rights reserved.
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: lock_deadlock.c,v 1.1.1.1 2003/11/20 22:13:34 toshok Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/db_shash.h"
#include "dbinc/lock.h"
#include "dbinc/txn.h"
#include "dbinc/rep.h"
#define ISSET_MAP(M, N) ((M)[(N) / 32] & (1 << (N) % 32))
#define CLEAR_MAP(M, N) { \
u_int32_t __i; \
for (__i = 0; __i < (N); __i++) \
(M)[__i] = 0; \
}
#define SET_MAP(M, B) ((M)[(B) / 32] |= (1 << ((B) % 32)))
#define CLR_MAP(M, B) ((M)[(B) / 32] &= ~(1 << ((B) % 32)))
#define OR_MAP(D, S, N) { \
u_int32_t __i; \
for (__i = 0; __i < (N); __i++) \
D[__i] |= S[__i]; \
}
#define BAD_KILLID 0xffffffff
typedef struct {
int valid;
int self_wait;
u_int32_t count;
u_int32_t id;
u_int32_t last_lock;
u_int32_t last_locker_id;
db_pgno_t pgno;
} locker_info;
static int __dd_abort __P((DB_ENV *, locker_info *));
static int __dd_build __P((DB_ENV *,
u_int32_t, u_int32_t **, u_int32_t *, u_int32_t *, locker_info **));
static int __dd_find __P((DB_ENV *,
u_int32_t *, locker_info *, u_int32_t, u_int32_t, u_int32_t ***));
static int __dd_isolder __P((u_int32_t, u_int32_t, u_int32_t, u_int32_t));
static int __dd_verify __P((locker_info *, u_int32_t *, u_int32_t *,
u_int32_t *, u_int32_t, u_int32_t, u_int32_t));
#ifdef DIAGNOSTIC
static void __dd_debug
__P((DB_ENV *, locker_info *, u_int32_t *, u_int32_t, u_int32_t));
#endif
/*
* lock_detect --
*
* PUBLIC: int __lock_detect __P((DB_ENV *, u_int32_t, u_int32_t, int *));
*/
int
__lock_detect(dbenv, flags, atype, abortp)
DB_ENV *dbenv;
u_int32_t flags, atype;
int *abortp;
{
DB_LOCKREGION *region;
DB_LOCKTAB *lt;
DB_TXNMGR *tmgr;
locker_info *idmap;
u_int32_t *bitmap, *copymap, **deadp, **free_me, *tmpmap;
u_int32_t i, keeper, killid, limit, nalloc, nlockers;
u_int32_t lock_max, txn_max;
int ret;
PANIC_CHECK(dbenv);
ENV_REQUIRES_CONFIG(dbenv,
dbenv->lk_handle, "DB_ENV->lock_detect", DB_INIT_LOCK);
/* Validate arguments. */
if ((ret = __db_fchk(dbenv, "DB_ENV->lock_detect", flags, 0)) != 0)
return (ret);
switch (atype) {
case DB_LOCK_DEFAULT:
case DB_LOCK_EXPIRE:
case DB_LOCK_MAXLOCKS:
case DB_LOCK_MINLOCKS:
case DB_LOCK_MINWRITE:
case DB_LOCK_OLDEST:
case DB_LOCK_RANDOM:
case DB_LOCK_YOUNGEST:
break;
default:
__db_err(dbenv,
"DB_ENV->lock_detect: unknown deadlock detection mode specified");
return (EINVAL);
}
/*
* If this environment is a replication client, then we must use the
* MINWRITE detection discipline.
*/
if (__rep_is_client(dbenv))
atype = DB_LOCK_MINWRITE;
free_me = NULL;
lt = dbenv->lk_handle;
if (abortp != NULL)
*abortp = 0;
/* Check if a detector run is necessary. */
LOCKREGION(dbenv, lt);
/* Make a pass only if auto-detect would run. */
region = lt->reginfo.primary;
if (region->need_dd == 0) {
UNLOCKREGION(dbenv, lt);
return (0);
}
/* Reset need_dd, so we know we've run the detector. */
region->need_dd = 0;
/* Build the waits-for bitmap. */
ret = __dd_build(dbenv, atype, &bitmap, &nlockers, &nalloc, &idmap);
lock_max = region->stat.st_cur_maxid;
UNLOCKREGION(dbenv, lt);
/*
* We need the cur_maxid from the txn region as well. In order
* to avoid tricky synchronization between the lock and txn
* regions, we simply unlock the lock region and then lock the
* txn region. This introduces a small window during which the
* transaction system could then wrap. We're willing to return
* the wrong answer for "oldest" or "youngest" in those rare
* circumstances.
*/
tmgr = dbenv->tx_handle;
if (tmgr != NULL) {
R_LOCK(dbenv, &tmgr->reginfo);
txn_max = ((DB_TXNREGION *)tmgr->reginfo.primary)->cur_maxid;
R_UNLOCK(dbenv, &tmgr->reginfo);
} else
txn_max = TXN_MAXIMUM;
if (ret != 0 || atype == DB_LOCK_EXPIRE)
return (ret);
if (nlockers == 0)
return (0);
#ifdef DIAGNOSTIC
if (FLD_ISSET(dbenv->verbose, DB_VERB_WAITSFOR))
__dd_debug(dbenv, idmap, bitmap, nlockers, nalloc);
#endif
/* Now duplicate the bitmaps so we can verify deadlock participants. */
if ((ret = __os_calloc(dbenv, (size_t)nlockers,
sizeof(u_int32_t) * nalloc, ©map)) != 0)
goto err;
memcpy(copymap, bitmap, nlockers * sizeof(u_int32_t) * nalloc);
if ((ret = __os_calloc(dbenv, sizeof(u_int32_t), nalloc, &tmpmap)) != 0)
goto err1;
/* Find a deadlock. */
if ((ret =
__dd_find(dbenv, bitmap, idmap, nlockers, nalloc, &deadp)) != 0)
return (ret);
killid = BAD_KILLID;
free_me = deadp;
for (; *deadp != NULL; deadp++) {
if (abortp != NULL)
++*abortp;
killid = (u_int32_t)((*deadp - bitmap) / nalloc);
limit = killid;
keeper = BAD_KILLID;
if (atype == DB_LOCK_DEFAULT || atype == DB_LOCK_RANDOM)
goto dokill;
/*
* It's conceivable that under XA, the locker could
* have gone away.
*/
if (killid == BAD_KILLID)
break;
/*
* Start with the id that we know is deadlocked
* and then examine all other set bits and see
* if any are a better candidate for abortion
* and that they are genuinely part of the
* deadlock. The definition of "best":
* OLDEST: smallest id
* YOUNGEST: largest id
* MAXLOCKS: maximum count
* MINLOCKS: minimum count
* MINWRITE: minimum count
*/
for (i = (killid + 1) % nlockers;
i != limit;
i = (i + 1) % nlockers) {
if (!ISSET_MAP(*deadp, i))
continue;
switch (atype) {
case DB_LOCK_OLDEST:
if (__dd_isolder(idmap[killid].id,
idmap[i].id, lock_max, txn_max))
continue;
keeper = i;
break;
case DB_LOCK_YOUNGEST:
if (__dd_isolder(idmap[i].id,
idmap[killid].id, lock_max, txn_max))
continue;
keeper = i;
break;
case DB_LOCK_MAXLOCKS:
if (idmap[i].count < idmap[killid].count)
continue;
keeper = i;
break;
case DB_LOCK_MINLOCKS:
case DB_LOCK_MINWRITE:
if (idmap[i].count > idmap[killid].count)
continue;
keeper = i;
break;
default:
killid = BAD_KILLID;
ret = EINVAL;
goto dokill;
}
if (__dd_verify(idmap, *deadp,
tmpmap, copymap, nlockers, nalloc, i))
killid = i;
}
dokill: if (killid == BAD_KILLID)
continue;
/*
* There are cases in which our general algorithm will
* fail. Returning 1 from verify indicates that the
* particular locker is not only involved in a deadlock,
* but that killing him will allow others to make forward
* progress. Unfortunately, there are cases where we need
* to abort someone, but killing them will not necessarily
* ensure forward progress (imagine N readers all trying to
* acquire a write lock). In such a scenario, we'll have
* gotten all the way through the loop, we will have found
* someone to keep (keeper will be valid), but killid will
* still be the initial deadlocker. In this case, if the
* initial killid satisfies __dd_verify, kill it, else abort
* keeper and indicate that we need to run deadlock detection
* again.
*/
if (keeper != BAD_KILLID && killid == limit &&
__dd_verify(idmap, *deadp,
tmpmap, copymap, nlockers, nalloc, killid) == 0) {
LOCKREGION(dbenv, lt);
region->need_dd = 1;
UNLOCKREGION(dbenv, lt);
killid = keeper;
}
/* Kill the locker with lockid idmap[killid]. */
if ((ret = __dd_abort(dbenv, &idmap[killid])) != 0) {
/*
* It's possible that the lock was already aborted;
* this isn't necessarily a problem, so do not treat
* it as an error.
*/
if (ret == DB_ALREADY_ABORTED)
ret = 0;
else
__db_err(dbenv,
"warning: unable to abort locker %lx",
(u_long)idmap[killid].id);
} else if (FLD_ISSET(dbenv->verbose, DB_VERB_DEADLOCK))
__db_err(dbenv,
"Aborting locker %lx", (u_long)idmap[killid].id);
}
__os_free(dbenv, tmpmap);
err1: __os_free(dbenv, copymap);
err: if (free_me != NULL)
__os_free(dbenv, free_me);
__os_free(dbenv, bitmap);
__os_free(dbenv, idmap);
return (ret);
}
/*
* ========================================================================
* Utilities
*/
# define DD_INVALID_ID ((u_int32_t) -1)
static int
__dd_build(dbenv, atype, bmp, nlockers, allocp, idmap)
DB_ENV *dbenv;
u_int32_t atype, **bmp, *nlockers, *allocp;
locker_info **idmap;
{
struct __db_lock *lp;
DB_LOCKER *lip, *lockerp, *child;
DB_LOCKOBJ *op, *lo;
DB_LOCKREGION *region;
DB_LOCKTAB *lt;
locker_info *id_array;
db_timeval_t now;
u_int32_t *bitmap, count, dd, *entryp, id, ndx, nentries, *tmpmap;
u_int8_t *pptr;
int expire_only, is_first, need_timeout, ret;
lt = dbenv->lk_handle;
region = lt->reginfo.primary;
LOCK_SET_TIME_INVALID(&now);
need_timeout = 0;
expire_only = atype == DB_LOCK_EXPIRE;
/*
* While we always check for expired timeouts, if we are called
* with DB_LOCK_EXPIRE, then we are only checking for timeouts
* (i.e., not doing deadlock detection at all). If we aren't
* doing real deadlock detection, then we can skip a significant,
* amount of the processing. In particular we do not build
* the conflict array and our caller needs to expect this.
*/
if (expire_only) {
count = 0;
nentries = 0;
goto obj_loop;
}
/*
* We'll check how many lockers there are, add a few more in for
* good measure and then allocate all the structures. Then we'll
* verify that we have enough room when we go back in and get the
* mutex the second time.
*/
retry: count = region->stat.st_nlockers;
if (count == 0) {
*nlockers = 0;
return (0);
}
if (FLD_ISSET(dbenv->verbose, DB_VERB_DEADLOCK))
__db_err(dbenv, "%lu lockers", (u_long)count);
count += 20;
nentries = ALIGN(count, 32) / 32;
/*
* Allocate enough space for a count by count bitmap matrix.
*
* XXX
* We can probably save the malloc's between iterations just
* reallocing if necessary because count grew by too much.
*/
if ((ret = __os_calloc(dbenv, (size_t)count,
sizeof(u_int32_t) * nentries, &bitmap)) != 0)
return (ret);
if ((ret = __os_calloc(dbenv,
sizeof(u_int32_t), nentries, &tmpmap)) != 0) {
__os_free(dbenv, bitmap);
return (ret);
}
if ((ret = __os_calloc(dbenv,
(size_t)count, sizeof(locker_info), &id_array)) != 0) {
__os_free(dbenv, bitmap);
__os_free(dbenv, tmpmap);
return (ret);
}
/*
* Now go back in and actually fill in the matrix.
*/
if (region->stat.st_nlockers > count) {
__os_free(dbenv, bitmap);
__os_free(dbenv, tmpmap);
__os_free(dbenv, id_array);
goto retry;
}
/*
* First we go through and assign each locker a deadlock detector id.
*/
for (id = 0, lip = SH_TAILQ_FIRST(®ion->lockers, __db_locker);
lip != NULL;
lip = SH_TAILQ_NEXT(lip, ulinks, __db_locker)) {
if (F_ISSET(lip, DB_LOCKER_INABORT))
continue;
if (lip->master_locker == INVALID_ROFF) {
lip->dd_id = id++;
id_array[lip->dd_id].id = lip->id;
if (atype == DB_LOCK_MINLOCKS ||
atype == DB_LOCK_MAXLOCKS)
id_array[lip->dd_id].count = lip->nlocks;
if (atype == DB_LOCK_MINWRITE)
id_array[lip->dd_id].count = lip->nwrites;
} else
lip->dd_id = DD_INVALID_ID;
}
/*
* We only need consider objects that have waiters, so we use
* the list of objects with waiters (dd_objs) instead of traversing
* the entire hash table. For each object, we traverse the waiters
* list and add an entry in the waitsfor matrix for each waiter/holder
* combination.
*/
obj_loop:
for (op = SH_TAILQ_FIRST(®ion->dd_objs, __db_lockobj);
op != NULL; op = SH_TAILQ_NEXT(op, dd_links, __db_lockobj)) {
if (expire_only)
goto look_waiters;
CLEAR_MAP(tmpmap, nentries);
/*
* First we go through and create a bit map that
* represents all the holders of this object.
*/
for (lp = SH_TAILQ_FIRST(&op->holders, __db_lock);
lp != NULL;
lp = SH_TAILQ_NEXT(lp, links, __db_lock)) {
LOCKER_LOCK(lt, region, lp->holder, ndx);
if ((ret = __lock_getlocker(lt,
lp->holder, ndx, 0, &lockerp)) != 0)
continue;
if (F_ISSET(lockerp, DB_LOCKER_INABORT))
continue;
if (lockerp->dd_id == DD_INVALID_ID) {
dd = ((DB_LOCKER *)R_ADDR(<->reginfo,
lockerp->master_locker))->dd_id;
lockerp->dd_id = dd;
if (atype == DB_LOCK_MINLOCKS ||
atype == DB_LOCK_MAXLOCKS)
id_array[dd].count += lockerp->nlocks;
if (atype == DB_LOCK_MINWRITE)
id_array[dd].count += lockerp->nwrites;
} else
dd = lockerp->dd_id;
id_array[dd].valid = 1;
/*
* If the holder has already been aborted, then
* we should ignore it for now.
*/
if (lp->status == DB_LSTAT_HELD)
SET_MAP(tmpmap, dd);
}
/*
* Next, for each waiter, we set its row in the matrix
* equal to the map of holders we set up above.
*/
look_waiters:
for (is_first = 1,
lp = SH_TAILQ_FIRST(&op->waiters, __db_lock);
lp != NULL;
is_first = 0,
lp = SH_TAILQ_NEXT(lp, links, __db_lock)) {
LOCKER_LOCK(lt, region, lp->holder, ndx);
if ((ret = __lock_getlocker(lt,
lp->holder, ndx, 0, &lockerp)) != 0)
continue;
if (lp->status == DB_LSTAT_WAITING) {
if (__lock_expired(dbenv,
&now, &lockerp->lk_expire)) {
lp->status = DB_LSTAT_EXPIRED;
MUTEX_UNLOCK(dbenv, &lp->mutex);
continue;
}
need_timeout =
LOCK_TIME_ISVALID(&lockerp->lk_expire);
}
if (expire_only)
continue;
if (lockerp->dd_id == DD_INVALID_ID) {
dd = ((DB_LOCKER *)R_ADDR(<->reginfo,
lockerp->master_locker))->dd_id;
lockerp->dd_id = dd;
if (atype == DB_LOCK_MINLOCKS ||
atype == DB_LOCK_MAXLOCKS)
id_array[dd].count += lockerp->nlocks;
if (atype == DB_LOCK_MINWRITE)
id_array[dd].count += lockerp->nwrites;
} else
dd = lockerp->dd_id;
id_array[dd].valid = 1;
/*
* If the transaction is pending abortion, then
* ignore it on this iteration.
*/
if (lp->status != DB_LSTAT_WAITING)
continue;
entryp = bitmap + (nentries * dd);
OR_MAP(entryp, tmpmap, nentries);
/*
* If this is the first waiter on the queue,
* then we remove the waitsfor relationship
* with oneself. However, if it's anywhere
* else on the queue, then we have to keep
* it and we have an automatic deadlock.
*/
if (is_first) {
if (ISSET_MAP(entryp, dd))
id_array[dd].self_wait = 1;
CLR_MAP(entryp, dd);
}
}
}
if (expire_only) {
region->need_dd = need_timeout;
return (0);
}
/* Now for each locker; record its last lock. */
for (id = 0; id < count; id++) {
if (!id_array[id].valid)
continue;
LOCKER_LOCK(lt, region, id_array[id].id, ndx);
if ((ret = __lock_getlocker(lt,
id_array[id].id, ndx, 0, &lockerp)) != 0) {
__db_err(dbenv,
"No locks for locker %lu", (u_long)id_array[id].id);
continue;
}
/*
* If this is a master transaction, try to
* find one of its children's locks first,
* as they are probably more recent.
*/
child = SH_LIST_FIRST(&lockerp->child_locker, __db_locker);
if (child != NULL) {
do {
lp = SH_LIST_FIRST(&child->heldby, __db_lock);
if (lp != NULL &&
lp->status == DB_LSTAT_WAITING) {
id_array[id].last_locker_id = child->id;
goto get_lock;
}
child = SH_LIST_NEXT(
child, child_link, __db_locker);
} while (child != NULL);
}
lp = SH_LIST_FIRST(&lockerp->heldby, __db_lock);
if (lp != NULL) {
id_array[id].last_locker_id = lockerp->id;
get_lock: id_array[id].last_lock = R_OFFSET(<->reginfo, lp);
lo = (DB_LOCKOBJ *)((u_int8_t *)lp + lp->obj);
pptr = SH_DBT_PTR(&lo->lockobj);
if (lo->lockobj.size >= sizeof(db_pgno_t))
memcpy(&id_array[id].pgno,
pptr, sizeof(db_pgno_t));
else
id_array[id].pgno = 0;
}
}
/*
* Pass complete, reset the deadlock detector bit,
* unless we have pending timeouts.
*/
region->need_dd = need_timeout;
/*
* Now we can release everything except the bitmap matrix that we
* created.
*/
*nlockers = id;
*idmap = id_array;
*bmp = bitmap;
*allocp = nentries;
__os_free(dbenv, tmpmap);
return (0);
}
static int
__dd_find(dbenv, bmp, idmap, nlockers, nalloc, deadp)
DB_ENV *dbenv;
u_int32_t *bmp, nlockers, nalloc;
locker_info *idmap;
u_int32_t ***deadp;
{
u_int32_t i, j, k, *mymap, *tmpmap;
u_int32_t **retp;
int ndead, ndeadalloc, ret;
#undef INITIAL_DEAD_ALLOC
#define INITIAL_DEAD_ALLOC 8
ndeadalloc = INITIAL_DEAD_ALLOC;
ndead = 0;
if ((ret = __os_malloc(dbenv,
ndeadalloc * sizeof(u_int32_t *), &retp)) != 0)
return (ret);
/*
* For each locker, OR in the bits from the lockers on which that
* locker is waiting.
*/
for (mymap = bmp, i = 0; i < nlockers; i++, mymap += nalloc) {
if (!idmap[i].valid)
continue;
for (j = 0; j < nlockers; j++) {
if (!ISSET_MAP(mymap, j))
continue;
/* Find the map for this bit. */
tmpmap = bmp + (nalloc * j);
OR_MAP(mymap, tmpmap, nalloc);
if (!ISSET_MAP(mymap, i))
continue;
/* Make sure we leave room for NULL. */
if (ndead + 2 >= ndeadalloc) {
ndeadalloc <<= 1;
/*
* If the alloc fails, then simply return the
* deadlocks that we already have.
*/
if (__os_realloc(dbenv,
ndeadalloc * sizeof(u_int32_t),
&retp) != 0) {
retp[ndead] = NULL;
*deadp = retp;
return (0);
}
}
retp[ndead++] = mymap;
/* Mark all participants in this deadlock invalid. */
for (k = 0; k < nlockers; k++)
if (ISSET_MAP(mymap, k))
idmap[k].valid = 0;
break;
}
}
retp[ndead] = NULL;
*deadp = retp;
return (0);
}
static int
__dd_abort(dbenv, info)
DB_ENV *dbenv;
locker_info *info;
{
struct __db_lock *lockp;
DB_LOCKER *lockerp;
DB_LOCKOBJ *sh_obj;
DB_LOCKREGION *region;
DB_LOCKTAB *lt;
u_int32_t ndx;
int ret;
lt = dbenv->lk_handle;
region = lt->reginfo.primary;
LOCKREGION(dbenv, lt);
/* Find the locker's last lock. */
LOCKER_LOCK(lt, region, info->last_locker_id, ndx);
if ((ret = __lock_getlocker(lt,
info->last_locker_id, ndx, 0, &lockerp)) != 0 || lockerp == NULL) {
if (ret == 0)
ret = DB_ALREADY_ABORTED;
goto out;
}
/* It's possible that this locker was already aborted. */
if ((lockp = SH_LIST_FIRST(&lockerp->heldby, __db_lock)) == NULL) {
ret = DB_ALREADY_ABORTED;
goto out;
}
if (R_OFFSET(<->reginfo, lockp) != info->last_lock ||
lockp->status != DB_LSTAT_WAITING) {
ret = DB_ALREADY_ABORTED;
goto out;
}
sh_obj = (DB_LOCKOBJ *)((u_int8_t *)lockp + lockp->obj);
SH_LIST_REMOVE(lockp, locker_links, __db_lock);
/* Abort lock, take it off list, and wake up this lock. */
SHOBJECT_LOCK(lt, region, sh_obj, ndx);
lockp->status = DB_LSTAT_ABORTED;
SH_TAILQ_REMOVE(&sh_obj->waiters, lockp, links, __db_lock);
/*
* Either the waiters list is now empty, in which case we remove
* it from dd_objs, or it is not empty, in which case we need to
* do promotion.
*/
if (SH_TAILQ_FIRST(&sh_obj->waiters, __db_lock) == NULL)
SH_TAILQ_REMOVE(®ion->dd_objs,
sh_obj, dd_links, __db_lockobj);
else
ret = __lock_promote(lt, sh_obj, 0);
MUTEX_UNLOCK(dbenv, &lockp->mutex);
region->stat.st_ndeadlocks++;
UNLOCKREGION(dbenv, lt);
return (0);
out: UNLOCKREGION(dbenv, lt);
return (ret);
}
#ifdef DIAGNOSTIC
static void
__dd_debug(dbenv, idmap, bitmap, nlockers, nalloc)
DB_ENV *dbenv;
locker_info *idmap;
u_int32_t *bitmap, nlockers, nalloc;
{
u_int32_t i, j, *mymap;
char *msgbuf;
__db_err(dbenv, "Waitsfor array\nWaiter:\tWaiting on:");
/* Allocate space to print 10 bytes per item waited on. */
#undef MSGBUF_LEN
#define MSGBUF_LEN ((nlockers + 1) * 10 + 64)
if (__os_malloc(dbenv, MSGBUF_LEN, &msgbuf) != 0)
return;
for (mymap = bitmap, i = 0; i < nlockers; i++, mymap += nalloc) {
if (!idmap[i].valid)
continue;
sprintf(msgbuf, /* Waiter. */
"%lx/%lu:\t", (u_long)idmap[i].id, (u_long)idmap[i].pgno);
for (j = 0; j < nlockers; j++)
if (ISSET_MAP(mymap, j))
sprintf(msgbuf, "%s %lx", msgbuf,
(u_long)idmap[j].id);
(void)sprintf(msgbuf,
"%s %lu", msgbuf, (u_long)idmap[i].last_lock);
__db_err(dbenv, msgbuf);
}
__os_free(dbenv, msgbuf);
}
#endif
/*
* Given a bitmap that contains a deadlock, verify that the bit
* specified in the which parameter indicates a transaction that
* is actually deadlocked. Return 1 if really deadlocked, 0 otherwise.
* deadmap is the array that identified the deadlock.
* tmpmap is a copy of the initial bitmaps from the dd_build phase
* origmap is a temporary bit map into which we can OR things
* nlockers is the number of actual lockers under consideration
* nalloc is the number of words allocated for the bitmap
* which is the locker in question
*/
static int
__dd_verify(idmap, deadmap, tmpmap, origmap, nlockers, nalloc, which)
locker_info *idmap;
u_int32_t *deadmap, *tmpmap, *origmap;
u_int32_t nlockers, nalloc, which;
{
u_int32_t *tmap;
u_int32_t j;
int count;
memset(tmpmap, 0, sizeof(u_int32_t) * nalloc);
/*
* In order for "which" to be actively involved in
* the deadlock, removing him from the evaluation
* must remove the deadlock. So, we OR together everyone
* except which; if all the participants still have their
* bits set, then the deadlock persists and which does
* not participate. If the deadlock does not persist
* then "which" does participate.
*/
count = 0;
for (j = 0; j < nlockers; j++) {
if (!ISSET_MAP(deadmap, j) || j == which)
continue;
/* Find the map for this bit. */
tmap = origmap + (nalloc * j);
/*
* We special case the first waiter who is also a holder, so
* we don't automatically call that a deadlock. However, if
* it really is a deadlock, we need the bit set now so that
* we treat the first waiter like other waiters.
*/
if (idmap[j].self_wait)
SET_MAP(tmap, j);
OR_MAP(tmpmap, tmap, nalloc);
count++;
}
if (count == 1)
return (1);
/*
* Now check the resulting map and see whether
* all participants still have their bit set.
*/
for (j = 0; j < nlockers; j++) {
if (!ISSET_MAP(deadmap, j) || j == which)
continue;
if (!ISSET_MAP(tmpmap, j))
return (1);
}
return (0);
}
/*
* __dd_isolder --
*
* Figure out the relative age of two lockers. We make all lockers
* older than all transactions, because that's how it's worked
* historically (because lockers are lower ids).
*/
static int
__dd_isolder(a, b, lock_max, txn_max)
u_int32_t a, b;
u_int32_t lock_max, txn_max;
{
u_int32_t max;
/* Check for comparing lock-id and txnid. */
if (a <= DB_LOCK_MAXID && b > DB_LOCK_MAXID)
return (1);
if (b <= DB_LOCK_MAXID && a > DB_LOCK_MAXID)
return (0);
/* In the same space; figure out which one. */
max = txn_max;
if (a <= DB_LOCK_MAXID)
max = lock_max;
/*
* We can't get a 100% correct ordering, because we don't know
* where the current interval started and if there were older
* lockers outside the interval. We do the best we can.
*/
/*
* Check for a wrapped case with ids above max.
*/
if (a > max && b < max)
return (1);
if (b > max && a < max)
return (0);
return (a < b);
}
|