1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
// column.fe
// Example of calculating forces exerted by a
// column of liquid solder in shape of skewed catenoid.
// All units cgs
parameter RAD = 0.05 // ring radius
parameter ZH = 0.08 // total height
parameter SHIFT = 0.025 // shift
#define SG 8 // specific gravity of solder
#define TENS 460 // surface tension of solder
#define GR 980 // acceleration of gravity
gravity_constant GR
BOUNDARY 1 PARAMETERS 1
X1: RAD*cos(P1)
X2: RAD*sin(P1) + SHIFT
X3: ZH
CONTENT // used to compensate for missing top facets
c1: 0
c2: ZH*x
c3: 0
ENERGY // used to compensate for gravitational energy under top facets
e1: 0
e2: SG*GR*ZH^2/2*x
e3: 0
BOUNDARY 2 PARAMETERS 1
X1: RAD*cos(P1)
X2: RAD*sin(P1)
X3: 0
vertices // given in terms of boundary parameter
1 0.00 boundary 1 fixed
2 pi/3 boundary 1 fixed
3 2*pi/3 boundary 1 fixed
4 pi boundary 1 fixed
5 4*pi/3 boundary 1 fixed
6 5*pi/3 boundary 1 fixed
7 0.00 boundary 2 fixed
8 pi/3 boundary 2 fixed
9 2*pi/3 boundary 2 fixed
10 pi boundary 2 fixed
11 4*pi/3 boundary 2 fixed
12 5*pi/3 boundary 2 fixed
edges
1 1 2 boundary 1 fixed
2 2 3 boundary 1 fixed
3 3 4 boundary 1 fixed
4 4 5 boundary 1 fixed
5 5 6 boundary 1 fixed
6 6 1 boundary 1 fixed
7 7 8 boundary 2 fixed
8 8 9 boundary 2 fixed
9 9 10 boundary 2 fixed
10 10 11 boundary 2 fixed
11 11 12 boundary 2 fixed
12 12 7 boundary 2 fixed
13 1 7
14 2 8
15 3 9
16 4 10
17 5 11
18 6 12
faces
1 -1 13 7 -14 density TENS
2 -2 14 8 -15 density TENS
3 -3 15 9 -16 density TENS
4 -4 16 10 -17 density TENS
5 -5 17 11 -18 density TENS
6 -6 18 12 -13 density TENS
bodies
1 1 2 3 4 5 6 volume 0.00045 density SG
read
// horizontal force on upper pad by central differences
dy := .0001
do_yforce := { oldshift := shift; shift := shift + dy;
set vertex y y+dy*z/zh; // uniform shear
recalc;
energy1 := total_energy -
body[1].pressure*(body[1].volume - body[1].target);
oldshift := shift; shift := shift - 2*dy;
set vertex y y-2*dy*z/zh; // uniform shear
recalc;
energy2 := total_energy -
body[1].pressure*(body[1].volume - body[1].target);
yforce := -(energy1-energy2)/2/dy;
printf "restoring force: %20.15f\n",yforce;
// restore everything
oldshift := shift; shift := shift + dy;
set vertex y y+dy*z/zh; // uniform shear
recalc;
}
// vertical force on upper pad by central differences.
dz := .0001
do_zforce := { oldzh := zh; zh := zh + dz;
set vertex z z+dz*z/oldzh; recalc; // uniform stretch
energy1 := total_energy -
body[1].pressure*(body[1].volume - body[1].target);
oldzh := zh; zh := zh - 2*dz;
set vertex z z-2*dz*z/oldzh; recalc; // uniform stretch
energy2 := total_energy -
body[1].pressure*(body[1].volume - body[1].target);
zforce := -(energy1-energy2)/2/dz;
printf "vertical force: %20.15f\n",zforce;
// restore everything
oldzh := zh; zh := zh + dz;
set vertex z z+dz*z/oldzh; recalc; // uniform stretch
}
// Sample evolution and force calculation
gogo := { u; g 5; r; g 5 ; r; g 5; hessian; hessian;
do_yforce; do_zforce;
}
|