1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><TITLE>Surface Evolver Documentation - Datafile format</title></head>
<BODY>
<!--NewPage-->
<center>
<h1><a href="http://www.susqu.edu/facstaff/b/brakke/evolver/evolver.htm">
Surface Evolver</a> Documentation</h1>
</center>
<a href="evolver.htm#doc top">Back to top of Surface Evolver documentation.</a>
<a href="index.htm">Index.</a>
<h1> Evolver datafile format </h1>
The initial configuration of the surface is read
from an ASCII datafile. See the <a href="cube.htm">cube</a>
or <a href="mound.htm">mound</a> examples for samples.
The datafile is organized into six parts:
<ul>
<li> <a href="#datafile header">Definitions and options</a>
<li> <a href="#vertices section">Vertices</a>
<li> <a href="#edges section">Edges</a>
<li> <a href="#faces section">Faces</a>
<li> <a href="#bodies section">Bodies</a>
<li> <a href="#read section">Initial commands</a>
</ul>
General datafile topics:
<ul>
<li><a href="syntax.htm">General syntax </a> (for datafiles and commands)
<li><a href="#include files">Include files</a>
<li><a href="#macros">Macros</a>
</ul>
In the syntax descriptions below, keywords will be in
upper case. <i>constexpr</i> means a constant expression,
and <i>expr</i> means any expression. <i>n</i> or <i>k</i> means an integer,
which may be signed if it is being used as an oriented
element label.
Square brackets denote optional items. '|' means 'or'.
<p>
<b>NOTE:</b> Usually a formula can occur anyplace a number is legal (except
element numbers, constraint numbers, etc). Some formulas are stored as
formulas and re-evaluated at each use; examples include constraint,
boundary, and quantity formulas. Others, such as vertex coordinates,
are evaluated when the datafile is read, and only the numeric value stored.
Thus if a user defines a vertex coordinate as <tt>3*width</tt>, then
changing the value of the variable <tt>width</tt> at runtime will not
affect the vertex. If you are not clear on which interpretation applies in
a certain spot, <a href="commands.htm#dump">dump</a> the datafile and
look at the spot to see if a formula or number was dumped.
<hr>
<a name="include files"></a><h2>Include files</h2>
The standard C language method of including other files is
available. The file name must be in double quotes. If the file is
not in the current directory,
<a href="install.htm#EVOLVERPATH">EVOLVERPATH</a> will be searched.
Includes may be nested to 10 deep.
Example:<pre>
#include "common.stuff"
</pre>
<hr>
<a name="macros"></a><h2>Macros</h2>
Macros are text substitutions done by replacing an identifier by
a string of characters before parsing. Macros are only defined
in the datafile, and do not work from the command prompt.
Simple macros (no parameters) may be defined as in C:
<pre> #DEFINE <em>identifier string</em>
</pre>
<em>identifier</em> must be an identifier without
other special meaning to the parser.
<em>string</em> is the rest of the logical line, not including
comments. It will be
substituted for <em>identifier</em> whenever <em>identifier</em> occurs as a token
subsequently. Substitutions are re-scanned. No checks
for recursiveness are made. There is a maximum length
(currently 500 characters) on a macro definition. Note: macro
identifiers are separate tokens, so if "-M" translates
into "-2", this will be read as two tokens, not a signed number.
<a name="keep_macros"></a>
The keyword <tt>keep_macros</tt> in the datafile will keep macro
definitions active during runtime, until the next datafile is
loaded.
<hr>
<hr>
<a name="datafile header"></a> <h2>Datafile top section</h2>
The datafile begins with optional definitions and specifications.
These are definitions that need to be made before the geometric
elements are defined, or for which command syntax is lacking or
awkward. Other initializations can be made at the
end of the datafile in the <a href="#read section">read</a> section
using the command language.
Each line starts with a keyword. The order is immaterial,
except for the usual rule that items must be defined before use.
None of these are required if you are willing to accept various
defaults. They are listed here in rough order of frequency of use; those
in the first column you should know, those in the second column you might never
use in a lifetime.
<table>
<tr valign=top><td>
<ul>
<li><a href="#datafile variables">Variables</a>
<li><a href="#constraint decl">Level set constraints</a>
<li><a href="#boundary decl">Parametric boundaries</a>
<li><a href="#named quantity decl">Named quantities</a>
<li><a href="#method instance decl">Named method instances</a>
<li><a href="#surface dimension decl">Surface dimension</a>
<li><a href="#space dimension decl">Space dimension</a>
<li><a href="#extra decl">Extra attributes </a>
<li><a href="#quadratic decl">Quadratic model</a>
<li><a href="#gravity_constant decl">Gravity constant </a>
<li><a href="#torus declaration">Torus model</a>
<li><a href="#torus_filled decl">Torus_filled</a>
<li><a href="#torus periods">Torus periods</a>
<li><a href="#viewing matrix">Viewing matrix</a>
<li><a href="#view transforms">View transforms</a>
<li><a href="#view generators">View transform generators</a>
<li><a href="#scale_limit">Scale_limit</a>
<li><a href="#functions">Functions and procedures</a>
<li><a href="#optimizing_parameter">Optimizing Parameters</a>
<li><a href="#gap constant decl">Gap constant </a>
<li><a href="#symmetric_content">Symmetric content</a>
<li><a href="#keep_originals">Keep original ids</a>
</ul></td> <td><ul>
<li><a href="#squared_curvature">Squared mean curvature</a>
<li><a href="#constraint_tolerance decl">Constraint tolerance</a>
<li><a href="#version">Version</a>
<li><a href="#metric decl">Metric </a>
<li><a href="#simplex decl">Simplex model </a>
<li><a href="#symmetry decl">Symmetry group</a>
<li><a href="#length_method_name">Length method</a>
<li><a href="#area_method_name">Area method</a>
<li><a href="#volume_method_name">Volume method</a>
<li><a href="#hessian_special_normal_vector">Hessian special normal vector</a>
<li><a href="#wulff decl">Crystalline integrands</a>
<li><a href="#phase decl">Phase file </a>
<li><a href="#ideal gas decl">Ideal gas model</a>
<li><a href="#interp_bdry decl">Interpolation of boundary parameters</a>
<li><a href="#mobility decl">Mobility </a>
<li><a href="#merit_factor">Merit factor</a>
<li><a href="#sqgauss">Squared Gaussian curvature</a>
<li><a href="#zoom_vertex">Zoom_vertex</a>
<li><a href="#zoom_radius">Zoom_radius</a>
<li><a href="#load_library">Dynamic load library </a>
<li><a href="#suppress_warning">Suppressing warnings </a>
</ul></td> </tr></table>
<hr>
<a name="datafile variables"></a><h2>Definitions of variables</h2>
Variables may be defined in the datafile top section with this syntax:
<pre>
PARAMETER <em>identifier</em> = <em>constexpr</em>
</pre>
This declares <em>identifier</em> to be a variable
with the given initial value. The value may
be changed at runtime with the
<a href="single.htm#A">A</a> command, or by
<a href="commands.htm#assignment">assignment</a>. Variables
may be used in any subsequent expression or constant expression.
Changing variables defined here
results in automatic recalculation of
the surface when
<a href="toggle.htm#autorecalc">autorecalc</a> is been toggled on.
Hence only variables needed in other top section declarations
should be defined here.
<hr>
<a name="nonpositive"></a>
<a name="nonnegative"></a>
<a name="nonwall"></a>
<a name="constraint decl"></a><h2>Level set constraint declarations</h2>
The format for declaring a
<a href="constrnt.htm#level set constraints">level set constraint</a>
in the top section of the datafile is
<pre>
CONSTRAINT <em>n</em> [GLOBAL] [CONVEX] [NONNEGATIVE] [NONPOSITIVE] [NONWALL]
FORMULA FUNCTION <em>expr</em>
[ENERGY:
E1: <em>expr</em>
E2: <em>expr</em>
E3: <em>expr</em>]
[CONTENT:
C1: <em>expr</em>
C2: <em>expr</em>
C3: <em>expr</em>]
</pre>
You may use <tt>EQUATION</tt> or <tt>FUNCTION</tt> as synonyms for <tt>FORMULA</tt>.
This defines constraint number <em>n</em>, where <em>n</em> is a
positive integer. The optional
keyword <tt>GLOBAL</tt> means the constraint automatically applies to all
vertices (but not automatically to edges or faces). <tt>GLOBAL</tt>
constraints count in the number limit. If <tt>CONVEX</tt> is given,
then an additional <a href="energies.htm#gap energy">gap energy</a>
is attributed to edges on the
constraint to prevent them from trying to short-circuit a convex
boundary. <tt>NONWALL</tt> indicates this constraint is to be ignored
in vertex and edge popping.
If <tt>NONNEGATIVE</tt> or <tt>NONPOSITIVE</tt> is given, then this is
a <a href="constrnt.htm#one-sided constraints">one-sided constraint</a>, and
all vertices will be forced to conform appropriately to the
constraint at each iteration. The <tt>FORMULA</tt> expression defines
the zero level set which is the actual constraint. It may be
written as an equation, since '=' is parsed as a low-precedence
minus sign.
The formula may include any expressions whose values
are known to the Evolver, given the particular vertex.
Most commonly one just uses the coordinates (x,y,z) of the
vertex, but one can use variables, quantity values,
or vertex extra attributes. Using a vertex extra
attribute is a good way to customize one formula to
individual vertices. For example, if there were a
vertex extra attribute called zfix, one could force
vertices to individual z values with one constraint
with the formula z = zfix, after of course assigning
proper values to zfix for each vertex (be sure to
fix up zfix after refining or otherwise creating vertices).
Do not use '>' or '<' to indicate inequalities; use
<tt>NONNEGATIVE</tt> or <tt>NONPOSITIVE</tt>.
Conditional expressions, as in C
language, are useful for defining constraints composed of several
surfaces joined smoothly, such as a cylinder with hemispherical
caps. Assignments to variables may be made at the start of expressions, mainly for
the purpose of evaluating common subexpressions only once in
the integrands. The syntax for such a compound expression is
<pre>
variable := expr, expr
</pre>
The value of the expression is the value of the second expression.
<p>
The optional <tt>ENERGY</tt> section signifies that vertices or edges on the
constraint are deemed to have an energy.
In the
<a href="model.htm#soapfilm model">soapfilm model</a>,
the next lines give
components of a vectorfield that will be integrated
along each edge on the constraint. In the
<a href="model.htm#string model">string model</a>,
just one component is needed, which is
evaluated at each vertex on the constraint.
The main purpose of this is to permit facets
entirely on the constraint to be omitted. Any
energy they would have had should be included here.
One use is to get prescribed contact angles at
a constraint. This energy should also include
<a href="energies.htm#gravity energy">gravitational potential energy</a>
due to omitted facets.
Integrals are now also evaluated on <tt>fixed</tt> edges, which
is a change from earlier versions of Evolver.
<p>
The optional <tt>CONTENT</tt> section signifies that vertices
(<a href="model.htm#string model">string model</a> ) or
edges (<a href="model.htm#soapfilm model">soapfilm model</a>) on the
constraint contribute to the area or volume of bodies.
If the part of a body boundary that is on a constraint
is not defined by facets, then the body volume must
get a contribution from a content integral.
It is important to understand how the content is added to the
body in order to get the signs right. The integral is evaluated
along the positive direction of the edge. If the edge is positively
oriented on a facet, and the facet is positively oriented on a body,
then the integral is added to the body. This may wind up giving
the opposite sign to the integrand from what you think may be natural.
Always check a new datafile when you load it to be sure the integrals
come out right.
<p>
<hr>
<a name="boundary decl"></a><h2>Parameterized boundary declaration</h2>
A parameterized boundary may be declared in the top section of the
datafile with the syntax
<pre>
BOUNDARY <em>n</em> PARAMETERS <em>k</em> [CONVEX]
X1: <em>expr</em>
X2: <em>expr</em>
X3: <em>expr</em>
</pre>
This defines boundary number <em>n</em>, where <em>n</em> is a positive
integer and <em>k</em> is the
number of parameters. If <tt>CONVEX</tt> is
given, then an additional
<a href="energies.htm#gap energy">gap energy</a> is attributed to
edges on the boundary to prevent them from trying
to short-circuit a convex boundary.
The following lines have
the functions for the coordinates in terms
of the parameters <tt>P1</tt> and maybe <tt>P2</tt>, <tt>P3</tt>,....
See the <a href="catenoid.htm">catenoid example</a>.
Energy and
content integrals for boundaries are implemented, with
the same syntax as for <a href="#constraint decl">
level set constraints</a>.
<hr><h2><a name="named quantity decl">Named quantities</a></h2>
<a name="lagrange_multiplier"></a>
The syntax for defining a <a name="info_only"></a>
<a href="quants.htm#named quantities">named quantity</a> in the data file is:
<p><pre> QUANTITY <i>name</i> ENERGY|FIXED=<i>value</i>|CONSERVED|INFO_ONLY [LAGRANGE_MULTIPLIER <i>constexpr</i>]
[TOLERANCE <i>constexpr</i>] [MODULUS <i>constexpr</i>] <i>methodlist</i> | FUNCTION <i>methodexpr</i>
</pre>
<p>
Here <i>name</i> is an identifier assigned by the user in order
to refer to the quantity.
Any quantities must be declared to be one of three types:
<ul>
<li><tt>ENERGY</tt> quantities are added to the overall
energy of the surface;
<li><tt>FIXED</tt> quantities that are constrained to a
fixed target <i>value</i>;
<li><tt>CONSERVED</tt> quantities are like FIXED in that the motion is
projected to conserve the quantity, but the actual value is not projected
to a given value.
<li><tt>INFO_ONLY</tt> quantities whose values are merely reported to the user.
</ul>
For fixed quantities, the optional Lagrange multiplier value supplies
the initial value of the Lagrange multiplier (the "pressure" attribute
of the quantity). It is meant for dump
files, so on reloading no iteration need be done to have a valid
Lagrange multiplier.
<p>
For fixed quantities, the tolerance attribute is used to judge convergence.
A surface is deemed converged when the sum of all ratios of quantity
discrepancies to tolerances is less than 1. This sum also includes
bodies of fixed volume. If the tolerance is not set or is negative,
the value of
the variable target_tolerance is used, which has a default value of 0.0001.
<p>
Each quantity has a modulus, which is just a scalar multiplier of
the whole quantity. A modulus of 0 will turn off an energy quantity.
The default modulus is 1.
<a name="global_method"></a>
The <i>methodlist</i> version of the quantity definition may
contain one or more <a href="quants.htm#method instances">method instances</a>.
To incorporate a previously explicitly defined instance, include
<tt>METHOD</tt> <i>instancename</i>. <tt>GLOBAL_METHOD</tt> may be used
instead of <tt>METHOD</tt> to indicate the method applies to all elements
of the appropriate type; it is equivalent to using <tt>GLOBAL</tt> in
the method definition.
To instantiate a method in the quantity definition,
you essentially
incorporate the <a href="#method instance decl">instance definition</a>,
but without an instance name. Example of a quantity with one predefined
method instance and one implicitly defined instance:
<pre> method_instance qwerty method facet_scalar_integral
scalar_integrand: x^2
quantity foobar energy method qwerty method edge_scalar_integral
scalar_integrand: y^3
</pre>
<p>
Usually the second, implicit definition will be more convenient.
Several method instances may be included in one <i>methodlist</i>
(up to a current limit of 50), and their values are added together
and multiplied by the quantity modulus to get the quantity value.
The <tt>FUNCTION</tt> <i>methodexpr</i> variant
defines the quantity as a function of
previously defined method instances. Example:
<pre> method_instance qwerty method facet_scalar_integral
scalar_integrand: x^2
quantity foobar energy function qwerty^3
</pre>
<p>
Non-global quantities may
be applied to elements individually by adding the quantity
name to the datafile line defining an element. They
may also be applied or unapplied at runtime with the
<a href="commands.htm#set">set</a> and
<a href="commands.htm#unset">unset</a> commands.
Orientable methods can be applied with negative orientation in the datafile by
following the name with a dash. The orientation in a set command
follows the orientation the element is generated with.
<p>
Methods applying to different types of elements may be combined
in one quantity.
If such a quantity is applied to an element, then
all method instances of that quantity of the appropriate type are applied
to the element. Original attachments of quantities are remembered,
soIf an edge method is applied to a facet, then edges created from
refining that facet will inherit the edge method.
<hr>
<a name="scalar_integrand"></a>
<a name="vector_integrand"></a>
<a name="form_integrand"></a>
<a name="k_form_order"></a>
<a name="parameter_1"></a>
<a name="global"></a>
<h2>
<a name="method_instance"></a>
<a name="method instance decl">Named method instances declaration</a></h2>
<a href="quants.htm#method instances">Method instances</a>
are usually defined as part of the
<a href="#named quantity decl">definition</a>
of a <a href="quants.htm#named quantities">named quantity</a>,
but there are circumstances where a quantity
is composed of several method instances and the method instances
need to be referred to individually; perhaps the user wants to
know the values of the individual instances.
The general syntax for defining an instance of a named method in
a datafile is:
<pre> METHOD_INSTANCE <i>name</i> METHOD <i>methodname</i> [MODULUS <i>constexpr</i>]
[ELEMENT_MODULUS <i>attrname</i>] [GLOBAL] [<i>parameters</i>]
</pre>
Here, <i>name</i> is a user-assigned name for referring to this
particular instance. <i>methodname</i> is one of the
<a href="quants.htm#methods">pre-defined methods</a> in Evolver.
The modulus value multiplies the method value to give the
instance value. The default modulus is 1.
Individual elements may be given multipliers by specifying an
<a href="elements.htm#extra attributes">extra attribute</a>
<i>attrname</i> for the type of element; the attribute must have been
defined earlier.
<tt>GLOBAL</tt> makes the method apply to all
elements of the appropriate type.
Non-global instances may
be applied to elements individually by adding the instance
name to the datafile line defining an element. They
may also be applied or unapplied at runtime with the
<a href="commands.htm#set">set</a> and
<a href="commands.htm#unset">unset</a> commands.
Orientable methods can be applied with negative orientation in the datafile by
following the name with a dash. The orientation in a set command
follows the orientation the element is generated with.
<p>
Each method may have various parameters to specialize
it to an instance. Currently the only parameters specified are:
<dl><dt> <tt>SCALAR_INTEGRAND: <i>expr</i> </tt></dt>
<dd> where <i>expr</i> is a scalar function of coordinates
(and of tangent or normal vector components in
<a href="quants.htm#edge_general_integral">edge_general_integral</a>
or <a href="quants.htm#facet_general_integral">facet_general_integral</a>).
Element attributes of the appropriate type
element may also be used.<p></dd>
<dt><tt>
VECTOR_INTEGRAND: <br>
Q1: <i>expr</i> <br>
Q2: <i>expr</i> <br>
Q3: <i>expr</i> <br> </tt></dt>
<dd> where the expressions are functions of the coordinates.
Element attributes of the appropriate type
element may also be used.<p></dd>
<dt><tt>
FORM_INTEGRAND: <br>
Q1: <i>expr</i> <br>
Q2: <i>expr</i> <br>
Q3: <i>expr</i> <br>
...<br></tt></dt>
<dd> where the expressions are functions of the coordinates.
Element attributes of the appropriate type
element may also be used. When used in the
<a href="quants.htm#facet_2form_integral">facet_2form_integral</a> method.
The form components are listed in lexicographic order,
i.e. in 4D the six components 12,13,14,23,24,34 would be listed
as <tt>Q1</tt> through <tt>Q6</tt>.<p></dd>
<dt><tt>PARAMETER_1 <i>constexpr</i></tt></dt>
<dd> For specifying miscellaneous numeric parameters to
certain methods.<p></dd>
<dt><tt>K_FORM_ORDER <i>constexpr</i></tt></dt>
<dd>For methods that use differential k-forms, this specifies the value of k.
Should occur before <tt>FORM_INTEGRAND</tt> when needed.</dd>
</dl>
<hr>
<a name="string"></a>
<a name="soapfilm"></a>
<a name="surface dimension decl"></a><h2>Surface dimension</h2>
The default dimension of the surface is 2. If not, it must be declared in the
top section of the datafile. For a 1-dimensional surface (the
<a href="model.htm#string model">string model</a>), simply include the line
<pre> STRING
</pre>
The default dimension 2 <a href="model.htm#soapfilm model">soapfilm model</a>
is equivalent to using
<pre> SOAPFILM
</pre>
In general, the line
<pre> SURFACE_DIMENSION <i>n</i>
</pre>
defines the surface to have dimension <i>n</i>.
Dimension over 2 is valid only in the
<a href="model.htm#simplex model">simplex model</a>.
The surface dimension may be accessed at runtime through the read-only variable
<a href="syntax.htm#surface_dimension">surface_dimension</a>.
<hr>
<a name="space dimension decl"></a><h2>Space dimension</h2>
The default dimension of space is 3. Otherwise it must be declared
in the top section of the datafile, with syntax
<pre>SPACE_DIMENSION <em>n</em>
</pre>
The dimension must be at most the value of MAXCOORD in
model.h, which is 4 in the distributed version.
The space dimension may be accessed at runtime through the read-only variable
<a href="syntax.htm#space_dimension">space_dimension</a>.
<hr>
<a name="extra decl"></a><h2>Extra attribute declarations</h2>
<a name="integer"></a>
<a name="real"></a>
<a name="ulong"></a>
<a name="self"></a>
It is possible for the user to define
<a href="elements.htm#extra attributes">extra attributes</a> for elements,
which may be single values or up to eight-dimensional arrays.
If these attributes are to
be included in the datafile, then the top section of the datafile
must contain appropriate definitions. The definition syntax is
the same as used by the <a href="commands.htm#define">define</a> runtime
command:
<pre> DEFINE <em>elementtype</em> ATTRIBUTE <em>name</em> <em>type</em> [<em>dim</em>]...
</pre>
where <em>elementtype</em> is <tt>vertex</tt>, <tt>edge</tt>, <tt>facet</tt>,
or <tt>body</tt>, <em>name</em>
is an identifier of your choice, <em>type</em> is <tt>REAL</tt> or
<tt>INTEGER</tt> (internally, there is also a <tt>ULONG</tt> unsigned
long type also),
and <em>dim</em> is an optional expression
for the vector dimension. There is no practical distinction between real
and integer types at the moment, since everything is stored internally
as reals. But there may be more datatypes added in the future.
Extra attributes are inherited by elements of the same type generated
by subdivision.
The <em>type</em> may be followed by <tt>FUNCTION</tt>
followed by a procedure in brackets to be
evaluated whenever the value of the attribute is read; in the formula,
<tt>self</tt> may be used to refer to the element in question to use its
attributes, in particular to at some point assign a value to the attribute.
The <a href="commands.htm#print">print</a> command may be used to print
attribute arrays or array slices in bracketed form.
Examples:
<pre> define edge attribute charlie real
define vertex attribute oldx real[3]
define facet attribute knots real[5][5][5]
define edge attribute bbb real function { self.bbb := self.x+self.y }
</pre>
WARNING: there is a syntax ambiguity if you mean to define a stand-alone
function in the top of the datafile and put it after an attribute
declaration. You should define stand-alone functions before attributes,
or separate them with some other kind of declaration.
<hr>
<a name="quadratic decl"></a><h2>Quadratic declaration</h2>
To declare that the datafile lists a surface in the
<a href="model.htm#quadratic model">quadratic model</a>,
the top section of the datafile should contain the line
<pre>
QUADRATIC
</pre>
The only effect on datafile syntax is that the
<a href="#edges section">edge section</a> may
list edge midpoint vertices.
<hr>
<a name="gravity_constant decl"></a><h2>Gravity constant declaration</h2>
The initial value of the
<a href="energies.htm#gravity energy">gravitational constant</a>
may be set in the datafile with the syntax
<pre> GRAVITY_CONSTANT <i>value</i> </pre>
The default value is 1.
<hr>
<a name="torus declaration"></a><h2>Torus model declaration</h2>
<a name="torus_filled decl"></a>
To declare periodic boundary conditions (i.e. make the domain a flat
<a href="model.htm#torus model">torus</a>),
include in the top section of the datafile the line
<pre>
TORUS
</pre>
All space dimensions will be periodic, with the period vectors given
in the <a href="#torus periods">periods</a> declaration.
If the domain is completely filled by bodies with prescribed volumes,
then the line
<pre>
TORUS_FILLED
</pre>
should be used instead to prevent degenerate volume constraints.
<hr>
<a name="periods"></a>
<a name="torus periods"></a><h2>Torus periods</h2>
If periodic boundary conditions are used
(the <a href="model.htm#torus model">torus model</a>) ,
the period vectors of the fundamental unit cell parallelpiped
may be defined in the top section of the datafile. Default is the unit cube.
The syntax
is the keyword <tt>PERIODS</tt> followed by expressions for the components
of each period vector:
<pre>PERIODS
<em>expr expr expr</em>
<em>expr expr expr</em>
<em>expr expr expr</em>
</pre>
The size of this matrix depends on the space dimension.
Variables may be used in the expressions,
so the fundamental domain may be changed interactively
by assigning new values to the variables. Be sure to
give a
<a href="commands.htm#recalc">recalc</a> command whenever you change such a
variable, in order to get the period matrix
re-evaluated.
<hr>
<a name="view_matrix"></a>
<a name="viewing matrix"></a><h2>Viewing matrix</h2>
The top section of the datafile may contain an initial
<a href="graphics.htm#view matrix">viewing matrix</a>:
<pre>
VIEW_MATRIX
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
</pre>
The matrix is in homogeneous
coordinates with translations in the last column.
The size of the matrix is one more than the space dimension.
This matrix will be part of all dump files, so the view
can be saved between sessions. This matrix is used and set
by native screen graphics ('s' command) and only applies
to internal graphics (Postscript, Xwindows, etc.) but
not external graphics (geomview). The elements may be
read or set at runtime by <tt>view_matrix[i][j]</tt>, where
the indices start at 1. In particular, one can write
command scripts to save and reload particular view matrices;
see <tt>saveview.cmd</tt> in the distribution package.
<hr>
<a name="swap_colors"></a>
<a name="view_transforms"></a>
<a name="view transforms"></a> <h2>View transforms</h2>
For the display of several transformations of the surface
simultaneously, a number of viewing transformation matrices
may be given in the top section of the datafile:
<pre>
VIEW_TRANSFORMS <em>n</em>
COLOR <em>color</em>
SWAP_COLORS
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
...
</pre>
The transforms apply to all graphics, internal
and external, and are prior to the
<a href="graphics.htm#view matrix">viewing matrix</a> for internal graphics.
The identity transform is always done, so
it does not need to be specified.
The number of matrices
follows the keyword <tt>VIEW_TRANSFORMS</tt>. Each matrix is
in homogeneous coordinates, with translation in the last column.
The size of each matrix is one more than the space dimension.
Individual matrices need no
special separation; Evolver just goes on an expression reading
frenzy until it has all the numbers it wants. Each matrix may
be preceded by an optional <a href="syntax.htm#colors">color</a>
that applies to facets transformed
by that matrix. The color applies to one transform only; it does not
continue until the next color specification.
If SWAP_COLORS is present instead, facet frontcolor and backcolor will be
swapped when this matrix is applied. Transforms may
be activated or deactivated interactively
with the
<a href="toggle.htm#transforms">transforms</a> toggle.
The internal variable <tt>transform_count</tt> records the number
of transforms, and
the transform matrices are accessible at runtime as a three-dimensional
matrix view_transforms[][][].
<a href="#view generators">View transform generators</a> are
a more sophisticated way to control
view transforms.
<hr>
<a name="view_transform_generators"></a>
<a name="view generators"></a><h2>View transform generators</h2>
Listing all the <a href="#view transforms">view transforms</a> is tedious
and inflexible. An alternative is to list just a few matrices that
can generate transforms. See the
<a href="commands.htm#transform_expr">transform_expr</a> command for
instructions on entering the expression that generates the actual
transforms. Special Note: in the <a href="model.htm#torus model">torus model</a>,
the period translations
are automatically added to the end of the list. So in the torus model,
these are always available, even if you don't have
view_transform_generators in the datafile. Syntax in the top of
the datafile:
<pre>
VIEW_TRANSFORM_GENERATORS <em>n</em>
SWAP_COLORS
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
<em> constexpr constexpr constexpr constexpr</em>
...
</pre>
The number of matrices
follows the keyword <tt>VIEW_TRANSFORM_GENERATORS</tt>. Each matrix is
in homogeneous coordinates, with translation in the last column.
The size of each matrix is one more than the space dimension.
Individual matrices need no
special separation; Evolver just goes on an expression reading
frenzy until it has all the numbers it wants.
If SWAP_COLORS is present, facet frontcolor and backcolor will be
swapped when this matrix is applied.
The internal variable <tt>transform_count</tt> records the number
of transforms, and
the transform matrices are accessible at runtime as a three-dimensional
matrix view_transforms[][][].
<hr>
<a name="scale_limit"></a><h2>Scale limit</h2>
To set an upper bound of <i>value</i>on the gradient descent
<a href="iterate.htm#scale factor">scale factor</a>,
include the line
<pre>
SCALE_LIMIT <i>value</i>
</pre>
in the top section of the datafile. The upper bound can be changed
at runtime with the <a href="single.htm#m">m</a> command, or by
setting the <tt>scale_limit</tt> variable. If surface tension is
the main energy, the scale_limit should be set to the inverse of
the surface tension.
<hr>
<a name="functions"></a><h2>Functions and procedures</h2>
Usually stand-alone user-defined
<a href="commands.htm#function definition">functions</a>
and
<a href="commands.htm#procedure definition">procedures</a>
are defined
in the <a href="datafile.htm#read section">read section</a> of the
datafile, but sometimes it is necessary to define them in the top section
of the datafile so they may be used in other top section declarations.
It is possible to define them in the top section with the same syntax
as in the read section. Note this applies to the parameter-passing
variety of functions and procedures, denoted by the leading keyword
"function" or "procedure", and not command definitions like "gg := {...}".
WARNING: there is a syntax ambiguity if you mean to define a stand-alone
function in the top of the datafile and put it after an attribute
declaration. You should define stand-alone functions before attributes,
or separate them with some other kind of declaration.
<hr>
<a name="optimizing_parameter"></a><h2>Optimizing parameter</h2>
<a name="optimising_parameter"></a>
<a name="pdelta"></a>
<a name="pscale"></a>
<a name="parameter scale"></a>
A variable may be made subject to optimization during
<a href="iterate.htm#iteration step">iteration</a>
or <a href="commands.htm#hessian command">hessian</a> commands
with the datafile declaration
<pre>
OPTIMIZING_PARAMETER <em>identifier</em> = <em>constexpr</em> PDELTA = <em>constexpr</em> PSCALE = <em>constexpr</em>
</pre>
Such a variable joins the vertex coordinates as an independent variable
during optimization. However, it differs from a coordinate in that
gradients with respect to it are calculated numerically,
rather than analytically. Thus it may be used anywhere a variable is
permitted. Hessians with optimizing parameters are
implemented. The optional pdelta value is the parameter
difference to use in finite differences; the default value is 0.0001.
The optional pscale value is a multiplier for the parameter's motion,
to do "impedance matching" of the parameter to the surface energy.
These attributes may be set on any parameter, for potential use
as an optimizing parameter.
At runtime, a parameter may be toggled to be optimizing or
not with the FIX and UNFIX commands. That is, <tt>fix radius</tt>
would make the radius variable non-optimizing (fixed value).
Also, the pdelta and pscale attributes may be accessed at runtime, as in
<pre>
height.pscale := 2*height.pscale
</pre>
"Optimising_parameter" is a synonym.
<hr>
<a name="gap_constant"></a>
<a name="spring_constant"></a>
<a name="gap constant decl"></a><h2>Gap constant declaration</h2>
The initial value of the gap constant for
<a href="energies.htm#gap energy">gap energy</a> may be set
in the datafile with the syntax
<pre> GAP_CONSTANT <i>value</i> </pre>
The default value is 1. Synonym: spring_constant.
<hr>
<a name="symmetric_content"></a><h2>Symmetric content</h2>
The datafile keyword <tt>SYMMETRIC_CONTENT</tt> triggers the use of
an alternate surface integral for calculating body volumes,
namely the vectorfield (x,y,z)/3. It is useful if unmodelled sides of a body are radial from the origin, or if constraint content
integrals (which is evaluated by an approximation) lead
to asymmetric results on what should be a symmetric surface.
<hr>
<a name="keep_originals"></a><h2>Keep original ids</h2>
The presence of the keyword
<pre>
keep_originals
</pre>
in the top of the datafile has the same effect as the -i command line
option, which is to keep the id numbers internally the same as in the
datafile, instead of renumbering them in the order they are read in.
<hr>
<a name="evolver_version"></a>
<a name="version"></a><h2>Version</h2>
If a datafile contains features present only after a certain version of
the Evolver, the datafile can contain a line of the form <br>
<tt> evolver_version "2.10"</tt><br>
This will generate a version error message if the current version is earlier,
or just a syntax error if run on an Evolver version earlier than 2.10.
<hr>
<a name="constraint_tolerance decl"></a><h2>Constraint tolerance</h2>
This is datafile declaration of the tolerance within which a vertex is deemed to satisfy a
<a href="constrnt.htm#level set constraints">level-set constraint</a>.
Default is 1e-12. Syntax:
<pre> CONSTRAINT_TOLERANCE <i>const_expr</i> </pre>
Sets the value of the internal variable
<a href="syntax.htm#constraint_tolerance">constraint_tolerance</a>.
<hr>
<a name="symmetry decl"></a><h2>Symmetry group declaration</h2>
To declare that the domain is the quotient space of a
<a href="model.htm#symmetry groups">symmetry group</a>, the
top section of the datafile must contain a line of the form
<pre>
SYMMETRY_GROUP "<em>name</em>"
</pre> "<em>name</em>" is a double-quoted name that is matched
against the list of
<a href="model.htm#implemented symmetries">defined symmetry groups</a>.
<hr>
<a name="length_method_name"></a><h2>Length method</h2>
This item, <tt>length_method_name</tt>, specifies
the name of the pre-defined method to use as the
method to compute edge length in place of the default
<a href="quants.htm#edge_length">edge_length</a> method.
It is optional. Developed so circular arcs can be
used in two-dimensional foams. Current reasonable methods
are <a href="quants.htm#circular_arc_length">circular_arc_length</a>
and <a href="quants.htm#spherical_arc_length">spherical_arc_length</a>.
Usage implies converting to <a href="#everything_quantities">
everything_quantities</a> mode.
Syntax:
<pre>
length_method_name <em>quoted_method_name</em>
</pre>
For example,
<pre>
string
space_dimension 2
length_method_name "circular_arc_length"
</pre>
<hr>
<a name="area_method_name"></a><h2>Area method</h2>
This item, <tt>area_method_name</tt>, specifies
the name of the pre-defined method to use as the
method to compute facet areas in place of the default
<a href="quants.htm#edge_area">edge_area</a> method in the string model
or <a href="quants.htm#facet_area">facet_area</a> method in the
soapfilm model. It is optional. Developed so circular arcs can be
used in two-dimensional foams. Current reasonable methods
are <a href="quants.htm#circular_arc_area">circular_arc_area</a>
and <a href="quants.htm#spherical_arc_area_n">spherical_arc_area</a>.
Synonymous with <a href="#volume_method_name">
volume_method_name</a> in the string model.
Usage implies converting to <a href="#everything_quantities">
everything_quantities</a> mode.
Syntax:
<pre>
area_method_name <em>quoted_method_name</em>
</pre>
For example,
<pre>
string
space_dimension 2
area_method_name "circular_arc_area"
</pre>
<hr>
<a name="volume_method_name"></a><h2>Volume method</h2>
This item, <tt>volume_method_name</tt>, specifies
the name of the pre-defined method to use as the
method to compute body volumes in place of the default
<a href="quants.htm#edge_area">edge_area</a> method in the string model
or <a href="quants.htm#facet_volume">facet_volume</a> method in the
soapfilm model. It is optional. Developed so circular arcs can be
used in two-dimensional foams. Synonymous with <a href="#area_method_name">
area_method_name</a> in the string model.
Usage implies converting to <a href="#everything_quantities">
everything_quantities</a> mode.
Syntax:
<pre>
volume_method_name <em>quoted_method_name</em>
</pre>
For example,
<pre>
string
space_dimension 2
volume_method_name "circular_arc_area"
</pre>
<hr>
<a name="hessian_special_normal_vector"></a><h2>Hessian special normal vector</h2>
When <a href="toggle.htm#hessian_special_normal">hessian_special_normal</a>
is on, hessian commands use
a special vectorfield for the direction of the perturbation, rather
than the usual surface normal. The vectorfield is specified in the
format
<pre>
HESSIAN_SPECIAL_NORMAL_VECTOR
c1: <em>expr</em>
c2: <em>expr</em>
c3: <em>expr</em>
</pre>
One can use vertex attributes in the expressions. Beware that
hessian_special_normal also applies to the normal calculated by
the <a href="elements.htm#vertexnormal">vertexnormal</a> attribute and the normal
used by regular <a href="commands.htm#vertex_average">vertex averaging</a>.
<hr>
<a name="simplex decl"></a><h2>Simplex model declaration</h2>
To declare that the datafile lists a surface in the
<a href="model.htm#simplex model">simplex model</a>,
the top section ot the datafile should contain the line
<pre>
SIMPLEX_REPRESENTATION
</pre>
The main effect on the datafile is that
<a href="#faces section">faces</a> are defined by oriented
vertex lists rather than edge lists.
<hr>
<a name="load_library"></a><h2>Dynamic load library</h2>
To load a <a href="misc.htm#dynamic load library">dynamic library</a>
of compiled
functions, the syntax is
<pre>
LOAD_LIBRARY "<em>filename</em>"
</pre>
where the double-quoted filename is the library. The current
directory and the <a href="install.htm#EVOLVERPATH">EVOLVERPATH</a>
will be searched for the library.
<hr>
<a name="wulff"></a>
<a name="wulff decl"></a><h2>Crystalline integrands</h2>
To declare that surface area energy should be calculated with
a crystalline integrand, the top section of the datafile should
contain a line of the form
<pre>
WULFF "<em>filename</em>"
</pre>
The double-quoted filename (with path) refers to a file
giving the Wulff vectors of the integrand.
The format of the file is one Wulff vector
per line with its components in ASCII
decimal format separated by spaces. The
first blank line ends the specification.
Some special integrands can be used by giving a
special name in place of the file name.
Currently, these are "hemisphere" for a
Wulff shape that is an upper unit hemisphere,
and "lens" for two unit spherical caps of
thickness 1/2 glued together on a horizontal
plane. These two don't need separate files.
<hr>
<a name="phasefile"></a>
<a name="phase"></a>
<a name="phase decl"></a><h2>Phase file declaration</h2>
To declare that the
<a href="energies.htm#surface tension">surface tension</a>
of an edge or facet depends on
the phases of its adjacent
<a href="elements.htm#facet phase">facets</a> or
<a href="elements.htm#body phase">bodies</a>, the top section of the datafile
should contain a line of the form
<pre>
PHASEFILE "<em>filename</em>"
</pre>
The information is read from an ASCII file, whose name is given in
a double-quoted string.
The first line of the file has the number of different
phases. Each line after consists of two phase numbers
and the surface tension between them. Lines not starting
with a pair of numbers are taken to be comments.
If a pair of
phases is not mentioned, the surface tension between
them is taken to be 1.0. Facets in the string model
or bodies in the soapfilm model can be labelled with
phases with the <tt>PHASE</tt> <i>n</i> phrase
in the datafile.
<hr>
<a name="ideal gas decl"></a><h2>Ideal gas model</h2>
A line in the top section of the datafile of the form
<pre>
PRESSURE <em>constexpr</em>
</pre>
specifies that bodies are compressible
and the ambient pressure is the value of <em>constexpr</em>.
The default is that bodies with given volume
are not compressible.
<hr>
<a name="interp_bdry decl"></a><h2>Interpolation of parameters</h2>
To use interpolation instead of extrapolation in calculating the
<a href="constrnt.htm#parametric boundaries">parameters</a>
of edge midpoints during refining, use the keyword
<pre> INTERP_BDRY_PARAM
</pre>
This should be done only if there are no periodic parameters.
<hr>
<a name="everything_quantities"></a><h2>Everything_quantities</h2>
Keyword in top section of the datafile. Causes all areas, volumes,
etc. to be converted to named quantities and methods. Equivalent
to the command line <a href="general.htm#options">option -q</a>,
or the <a href="toggle.htm#convert_to_quantities">
convert_to_quantities</a> command.
<hr>
<a name="mobility_tensor"></a>
<a name="mobility decl"></a><h2>Mobility declaration</h2>
A <a href="model.htm#mobility">mobility</a>
matrix may be defined in the top section of the datafile
by the syntax
<pre>
MOBILITY_TENSOR
<em>expr expr expr</em>
<em>expr expr expr</em>
<em>expr expr expr</em>
</pre>
or
<pre>
MOBILITY <em>expr</em>
</pre>
The first form gives the full mobility matrix, and the second form
gives the matrix as a scalar multiple of the identity matrix.
The formulas are evaluated at each vertex at each iteration, and
so formulas may depend on vertex position and any vertex attributes.
<hr>
<a name="conformal_metric"></a>
<a name="klein_metric"></a>
<a name="metric decl"></a><h2>Metric declaration</h2>
A <a href="model.htm#Riemannian metric">Riemannian metric</a>
on the ambient space may be declared in the
top section of the datafile with the syntax
<pre>METRIC
<em>expr expr expr</em>
<em>expr expr expr</em>
<em>expr expr expr</em>
</pre>
or
<pre>
CONFORMAL_METRIC <em>expr</em>
</pre>
or
<pre>
KLEIN_METRIC
</pre>
The keyword <tt>METRIC</tt> is followed by the N^2
components of the metric tensor, where N is the dimension
of space. The components do not have to obey any particular
line layout; they may be all on one line, or each on its
own line, or any combination. It is up to the user to
maintain symmetry. A
<a href="model.htm#conformal metric">conformal metric</a> is a scalar multiple
of the identity matrix, and only the multiple need be given.
A conformal metric will run about twice as fast.
The <a href="model.htm#Klein hyperbolic metric">Klein metric</a>
is a built-in metric for hyperbolic
n-space modelled on the unit disk or ball.
<hr>
<a name="merit_factor"></a> <h2>Merit factor</h2>
If the keyword <tt>MERIT_FACTOR</tt> is present, then the
<a href="single.htm#i">i</a> command will print the ratio
total_area^3/total_volume^2, which measures the efficiency of
area enclosing volume. A holdover from the early days of trying
to beat Kelvin's partition of space.
<hr>
<a name="square_curvature"></a> <a name="curvature_power"></a>
<a name="squared_curvature"></a><h2>Squared mean curvature</h2>
To add an energy of squared mean curvature, include a line in the
top of the datafile
<pre> SQUARED_CURVATURE modulus
</pre>
The modulus is a multiplier for the energy, and is available at
runtime in the read-write variable sq_curvature_modulus. This is the original
squared mean curvature energy; later versions are in the squared
curvature named methods.
<p>
In the string model, the power of the curvature is controlled by
the internal read-write variable curvature_power.
<hr>
<a name="sqgauss"></a>
<a name="square_gaussian_curvature"></a>
<a name="squared_gaussian_curvature"></a><h2>Squared Gaussian curvature</h2>
To add an energy of squared Gaussian curvature, include a line in the
top of the datafile
<pre> SQUARED_GAUSSIAN_CURVATURE modulus
</pre>
The modulus is a multiplier for the energy.
Synonyms: <tt>square_gaussian_curvature</tt>, <tt>sqgauss</tt>
<hr>
<a name="zoom_vertex"></a><h2>Zoom_vertex</h2>
Datafile keyword setting the current <a href="commands.htm#zoom">zoom</a>
vertex. Used in dump files after a zoom command has been given.
<hr>
<a name="zoom_radius"></a><h2>Zoom_radius</h2>
Datafile keyword setting the current <a href="commands.htm#zoom">zoom</a>
radius. Used in dump files after a zoom command has been given.
<hr>
<a name="unsuppress_warning"></a>
<a name="suppress_warning"></a><h2>Suppress_warning</h2>
Datafile keyword instructing Evolver not to print a certain warning.
Syntax:
<pre>
SUPPRESS_WARNING <em>number</em>
</pre>
where <em>number</em> is the number of the warning. Meant to suppress
irritating warning messages that you know are irrelevant. Warnings
can be restored with the syntax
<pre>
UNSUPPRESS_WARNING <em>number</em>
</pre>
<hr>
<hr>
<a name="element lists"></a><h2>Element lists</h2>
The lists of geometric elements follow a general format. Each element
is defined on one line. The first entry on a line is the element number.
Numbering need not be consecutive, and may omit numbers, but be aware
that internally elements will be renumbered in order. The original number
in the datafile is accessible as the
<a href="elements.htm#original">original</a> attribute of an element.
After the element number comes the basic defining data, followed by
optional attributes in arbitrary order. Besides the particular attributes
for each element type listed below, one may specify values for any
<a href="elements.htm#extra attributes">extra attributes</a>
defined earlier. The syntax is attribute name followed
by the appropriate number of values.
Also an arbitrary number of
<a href="quants.htm#named quantities">named quantities</a> or
<a href="quants.htm#method instances">method instances</a> may
be listed. These add method values for this element to the
named quantity. The named quantity or instance
must have been declared in the top section of the datafile.
<hr>
<a name="vertices section"></a><h2>Vertex list</h2>
The datafile vertex list is started by the keyword <tt>VERTICES</tt> at
the start of a line. It is followed by lines with
one vertex specification per line. If the vertex is
not on a
<a href="constrnt.htm#parametric boundaries">parametric boundary</a>, the syntax is
<pre>
<em>k x y ...</em> [FIXED] [CONSTRAINT <em>c1 c2 ...</em>] [BARE]
[<em>quantityname ...</em>] [<em>methodname ...</em>]
</pre>
The syntax for a vertex on a
<a href="constrnt.htm#parametric boundaries">parametric boundary</a> is
<pre>
<em>k p1 [p2 ...] </em> BOUNDARY <em>b</em> [FIXED] [BARE] [<em>quantityname ...</em>]
[<em>methodname ...</em>]
</pre>
Here <em>k</em> is the vertex number, a positive integer. Vertices
do not need to be listed in order, and there may be gaps
in the numbering. However, if they are not in consecutive
order, then the numbering in dump files will be different.
<em>x y ...</em> are constant expressions
for coordinates.
In the parametric boundary format, the boundary parameter
values are given instead of the coordinates.
If <a href="elements.htm#fixed vertex"><tt>FIXED</tt></a> is given,
then the vertex never moves, except possibly for an
initial projection to constraints. If <tt>CONSTRAINT</tt> is
given, then one or more
<a href="constrnt.htm#level set constraints">constraint</a> numbers must follow.
You can list as many constraints as you
want, as long as those that apply exactly at any time
are consistent and independent.
The given coordinates need not lie exactly on the
constraints; they will be projected onto them. A vertex
on a parametric boundary cannot also be on a constraint.
<p>
The <a href="elements.htm#bare vertex"><tt>BARE</tt></a>
attribute is just an instruction to the
checking routines that this vertex is not supposed to have
an adjacent facet in the soapfilm model, so spurious
warnings will not be generated. This is useful when you
want to show bare wires or outline fundamental domains.
<p>An arbitrary number of
<a href="quants.htm#named quantities">named quantities</a>
or <a href="quants.htm#method instances">method instances</a> may
be listed. These add method values for this element to the
named quantity. The named quantity or instance
must have been
<a href="#named quantity decl">declared</a> in the top section of the datafile.
<p>
The <a href="commands.htm#list">list</a>
<a href="commands.htm#list">vertices</a> command
prints the datafile format listing of vertices.
<hr>
<a name="edges section"></a><h2>Edge list</h2>
The datafile edge list follows the vertex list,
and is started by the keyword <tt>EDGES</tt> at the
start of a line. It is followed by lines with one
edge specification per line in this format (linespliced here):
<pre>
<em>k v1 v2 [midv] [s1 s2 s3]</em> [WRAP <em>w</em>] [FIXED] [BOUNDARY <em>b</em>] \
[CONSTRAINTS <em>c1 [c2 ...]</em>] [TENSION <em>constexpr</em>] [COLOR <em>n</em>] \
[BARE] [<em>quantityname ...</em>] [<em>methodname ...</em>]
</pre>
Here <em>k</em> is the edge number, with numbering following the same
rules as for vertices. <em>v1</em> and <em>v2</em> are the numbers of
the tail and head vertices of the edge. In the
<a href="model.htm#quadratic model">quadratic model</a>, the
edge midpoint may be listed as a third vertex <em>midv</em> (otherwise a
midpoint vertex will be created). In the
<a href="model.htm#torus model">torus model</a>, there must
follow signs <em>s1 s2 s3</em> indicating how the edge
wraps around each unit cell direction: + for once
positive, * for none, and - for once negative. In non-torus
<a href="model.htm#symmetry groups">symmetry groups</a>, each edge
should have a <tt>WRAP</tt> symmetry group element encoded as an integer.
<a href="elements.htm#fixed edge"><tt>FIXED</tt></a> means that
all vertices and edges resulting from subdividing this edge will have
the <tt>FIXED</tt> attribute; it does not mean that the
endpoints will be automatically fixed. Likewise the
<a href="constrnt.htm#parametric boundaries"><tt>BOUNDARY</tt></a> and
<a href="constrnt.htm#level set constraints"><tt>CONSTRAINT</tt></a>
attributes will be inherited by all edges and vertices
derived from this edge. If a constraint has energy or content
integrands, these will be done for this edge. IMPORTANT: If a
constraint number is given as negative, the edge energy and content
integrals will be done in the opposite orientation. In the
<a href="model.htm#string model">string model</a>,
the default tension is 1, and in the
<a href="model.htm#soapfilm model">soapfilm model</a>, the default
tension is 0. However, edges may be given nonzero tension in the
soapfilm model, and they will contribute to the energy.
<p>
If the <a href="model.htm#simplex model">simplex model</a>
is in effect, edges are one less dimension
than facets and given by an ordered list of vertices.
Only edges on constraints with integrals need be listed.
<p>
The <a href="elements.htm#bare edge"><tt>BARE</tt></a>
attribute is just an instruction to the
checking routines that this ede is not supposed to have
an adjacent facet in the soapfilm model, so spurious
warnings will not be generated. This is useful when you
want to show bare wires or outline fundamental domains.
<p>An arbitrary number of
<a href="quants.htm#named quantities">named quantities</a>
or <a href="quants.htm#method instances">method instances</a> may
be listed. These add method values for this element to the
must have been
<a href="#named quantity decl">declared</a> in the top section of the datafile.
If the quantity or instance has orientation-dependent methods, the name
may be followed by a dash to reverse the applied orientation.
<p>
The <a href="commands.htm#list">list</a>
<a href="commands.htm#list">edges</a> command
prints the datafile format listing of edges.
<hr>
<a name="faces section"></a><a name="face"></a><a name="faces"></a>
<h2> Face list</h2>
The datafile face list follows the edge list,
and is started by the keyword <tt>FACES</tt> at the
start of a line. It is followed by lines with one
facets specification per line in this format:
<pre>
<em>k e1 e2 ...</em> [FIXED] [TENSION <em>constexpr</em>] [BOUNDARY <em>b</em>] \
[CONSTRAINTS <em>c1 [c2 ...]</em>] [NODISPLAY] \
[COLOR <em>n</em>]} [FRONTCOLOR <em>n</em>] [BACKCOLOR <em>n</em>] \
[PHASE <em>n</em>] [<em>quantityname</em> ...] [<em>methodname</em> ...]
</pre>
Here <em>k</em> is the face number, with numbering following the
same rules as for
<a href="#vertices section">vertices</a>. There follows a list of
oriented edge numbers in counterclockwise order around
the face. A negative edge number means the opposite
orientation of the edge from that defined in the edge list.
The head of the last edge must be the tail of the first
edge (except if you're being tricky in the
<a href="model.htm#string model">string model</a>).
There is no limit on the number of edges. The face
will be automatically subdivided into triangles if it has
more than three edges in the
<a href="model.htm#soapfilm model">soapfilm model</a>.
The
<a href="elements.htm#facet density"><tt>TENSION</tt></a>
(synonym: <tt>DENSITY</tt>)
value is the energy per unit area
(the <a href="energies.htm#surface tension">surface tension</a>)
of the facet; the default is 1. Density 0 facets exert no
force, and can be useful to define volumes or in
displays. Fractional density is useful for prescribed
contact angles.
<a href="elements.htm#nodisplay"><tt>NODISPLAY</tt></a>
prevents the facet from being displayed.
The <a href="elements.htm#facet color"><tt>COLOR</tt></a>
attribute applies to both sides of a facet;
<a href="elements.htm#frontcolor"><tt>FRONTCOLOR</tt></a>
applies to the positive side (edges
going counterclockwise) and
<a href="elements.htm#backcolor"><tt>BACKCOLOR</tt></a> to the
negative side.
The <a href="elements.htm#facet phase"><tt>PHASE</tt></a>
number is used in the <a href="model.htm#string model">string model</a>
to determine the surface tension of edges between facets
of different phases, if phases are used.
<p>
If the <a href="model.htm#simplex model">simplex model</a>
is in effect, the edge list should
be replaced by an oriented list of vertex numbers.
<p>An arbitrary number of
<a href="quants.htm#named quantities">named quantities</a>
or <a href="quants.htm#method instances">method instances</a> may
be listed. These add method values for this element to the
must have been
<a href="#named quantity decl">declared</a> in the top section of the datafile.
If the quantity or instance has orientation-dependent methods, the name
may be followed by a dash to reverse the applied orientation.
<p>
The faces section is optional in the
<a href="model.htm#string model">string model</a>.
<p>
The <a href="commands.htm#list">list</a>
<a href="commands.htm#list">facets</a> command
prints the datafile format listing of facets.
<hr>
<a name="bodies section"></a><h2> Body list</h2>
The datafile body list follows the face list, and
is started by the keyword <tt>BODIES</tt> at the
start of a line. It is followed by lines with one
body specification per line in this format:
<pre>
<em>k f1 f2 f3 ....</em> [VOLUME <em>constexpr</em>] [VOLCONST <em>constexpr</em>] [ACTUAL_VOLUME <em>constexpr</em>] \
[PRESSURE <em>p</em>] [DENSITY <em>constexpr</em>] [PHASE <em></em>]
</pre>
Here <em>k</em> is the body number,
and <em>f1 f2 f3 ...</em> is an
unordered list of signed facet numbers. Positive
sign indicates that the facet normal (as given by
the right-hand rule from the edge order in the
facet list) is outward from the body and negative means
the normal is inward. Giving a
<tt>VOLUME</tt> value <em>constexpr</em> means the body has a
<a href="elements.htm#target volume">volume constraint</a>,
unless the
<a href="datafile.htm#ideal gas decl">ideal gas model</a>
is in effect, in which case <em>constexpr</em>
is the volume at the ambient pressure.
<a href="elements.htm#body volconst"><tt>VOLCONST</tt></a>
is a value added to the volume; it is useful
when the volume calculation from facet and edge integrals
differs from the true volume by a constant amount, as may
happen in the <a href="model.htm#torus model">torus model</a>.
<tt>ACTUAL_VOLUME</tt> is a number that can be specified
in the rare circumstances where the torus volume
volconst calculation gives the wrong answer; volconst
will be adjusted to give this volume of the body.
Giving a <tt>PRESSURE</tt> value means
that the body is deemed to have a constant internal
<a href="elements.htm#body pressure">pressure</a>;
this is useful for prescribed mean
curvature problems. It is incompatible with
prescribed volume. Giving a
<a href="elements.htm#body density"><tt>DENSITY</tt></a> value means
that
<a href="energies.htm#gravity energy">gravitational potential energy</a>
will be included.
<p>
To endow a facet with <tt>VOLUME</tt>, <tt>PRESSURE</tt>,
or <tt>DENSITY</tt>
attributes in the <a href="model.htm#string model">string model</a>,
define a body with just the one facet.
<p>
The
<a href="elements.htm#body phase"><tt>PHASE</tt></a>
number is used in the <a href="model.htm#soapfilm model">soapfilm model</a>
to determine the <a href="energies.htm#surface tension">surface tension</a>
of facets between bodies of different phases, if phases are used.
<p>
The <tt>BODIES</tt> section is optional.
<p>
The <a href="commands.htm#list">list</a>
<a href="commands.htm#list">bodies</a> command
prints the datafile format listing of bodies.
<hr>
<a name="read section"></a><h2> READ section</h2>
The final section of the datafile may contain commands.
These commands are read and executed immediately, just as
if they had been entered at the command prompt.
Encountering the keyword <tt>READ</tt> in the datafile causes
the Evolver to switch from datafile mode to command mode and
read the rest of the datafile as command input. This feature
is useful for automatic initialization of the surface with
refining, iteration, defining your own commands, etc.
The <tt>READ</tt> section is optional.
Example:
<pre> bodies
1 1 2 3 4 5 6 volume 1
read
// automatically do this when datafile is loaded
refine edge where on_constraint 1
// typical evolution
gogo := { g 5; r; g 10; r; g 20 }
</pre>
The <a href="commands.htm#bottominfo">list</a>
<a href="commands.htm#bottominfo">bottominfo</a> command
prints the <tt>READ</tt> section that would be printed in a dump file.
<hr>
<a href="evolver.htm#doc top">Back to top of Surface Evolver documentation.</a>
<a href="index.htm">Index.</a>
</body>
</html>
|