1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
  
     | 
    
      <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Surface Evolver geometric elements</title>
</head>
<BODY>
<!--NewPage-->
<center>
<h1><a href="http://www.susqu.edu/facstaff/b/brakke/evolver/evolver.htm">
Surface Evolver</a> Documentation</h1>
</center>
<a href="evolver.htm#doc top">Back to top of Surface Evolver documentation.</a>
<a href="index.htm">Index.</a>
<a name="attributes"></a>
<a name="geometric elements"></a><h1>Geometric elements</h1>
      The surface is defined in terms of its geometric elements of 
      each dimension.  Each element has its own set of attributes.
      Some may be set by the user; others are set internally but
      may be queried by the user.  It is also possible to dynamically
      define <a href="#extra attributes">extra attributes</a>
       for any type of element, which may
      be single values or vectors of values.  Attribute values can
be specified in the <a href="datafile.htm">datafile</a>, and queried
with <a href="syntax.htm#attr values">commands</a>.
<p>Elements: <a href="#vertices">vertices</a>,
<a href="#edges">edges</a>,
<a href="#facets">facets</a>,
<a href="#bodies">bodies</a>,
<a href="#facetedge"></a>facet-edges.
<hr>
<a name="vertices"></a><h2>Vertices</h2>
            A vertex is a point in space.
            The coordinates of the vertices are the parameters
            that determine the location of the surface.  It is
            the coordinates that are changed when the surface 
            evolves.  A vertex carries no default energy, but may
            have energy by being on a 
            <a href="constrnt.htm#level set constraints">
            level set constraint</a> in the 
            <a href="model.htm#string model">string model</a>,
            or by having a <a href="quants.htm">named quantity</a>
            energy applied to it.
            The vertices of the original surface
            are defined in the <a href="datafile.htm#vertices section">
            vertices section</a> of the datafile.<p>
            Attributes:
<table><tr valign=top><td>
<ul>
<li>            <a href="#id">id</a>
<li>            <a href="#original">original</a>
<li>            <a href="#coordinates">coordinates</a>
<li>            <a href="#parameter values">parameter values</a>
<li>            <a href="#fixed vertex">fixed</a>
<li>            <a href="#vertex constraints">constraints</a>
<li>            <a href="#on_constraint">on_constraint</a>
<li>            <a href="#hit_constraint">hit_constraint</a>
<li>            <a href="#__v_constraint_list">__v_constraint_list</a>
<li>            <a href="#vertex boundary">boundary</a>
<li>            <a href="#on_boundary">on_boundary</a>
<li>            <a href="#bare vertex">bare</a>
<li>            <a href="#vertex edges">edges</a>
<li>            <a href="#vertex facets">facets</a>
<li>            <a href="#vertex valence">valence</a>
</ul></td><td><ul>
<li>            <a href="#quantity attribute">quantities</a>
<li>            <a href="#on_quantity">on_quantity</a>
<li>            <a href="#on_method_instance">on_method_instance</a>
<li>            <a href="#mid_edge">mid_edgedihedral</a>
<li>            <a href="#mid_facet">mid_facet</a>
<li>            <a href="#mean_curvature">ean_curvature</a>
<li>            <a href="#sq_mean_curv">square mean curvature</a>
<li>            <a href="#axial_point">axial_point</a>
<li>            <a href="#triple_point">triple_point</a>
<li>            <a href="#tetra_point">tetra_point</a>
<li>            <a href="#vertexnormal">vertexnormal</a>
<li>            <a href="#__force">__force</a>
<li>            <a href="#__velocity">__velocity</a>
<li>            <a href="#raw_velocity">raw_velocity</a>
<li>            <a href="#extra attributes">extra attributes</a>
</ul>
</td></tr></table>
<hr>
<a name="edges"></a><h2>Edges</h2>
            An edge is a one-dimensional <a href="#geometric elements">
geometric element</a>.
  In the <a href="model.htm#linear model">linear model</a>,
 an edge is an oriented line segment between a tail
            <a href="#vertices">vertex</a> and a head vertex. 
  In the <a href="model.htm#quadratic model">quadratic model</a>, an edge is
defined by quadratic intepolation of two endpoints and a midpoint.
  In the <a href="model.htm#Lagrange model">lagrange model</a>, an edge is
defined by the appropriate order interpolation with the edge vertices.
In the <a href="model.htm#string model">string model</a>, edges carry
a default surface tension energy proportional to their length.
Edges may also carry energy by being on 
<a href="constrnt.htm#level set constraints">level set constraints</a>
in the 
<a href="model.htm#soapfilm model">soapfilm model</a>,
 or by having <a href="quants.htm">
named quantity</a>  energies applied to them.
The edges of the original surface are defined in the 
<a href="datafile.htm#edges section">edges section</a> of the datafile.
<p>
            Attributes:
<table><tr valign=top><td>
<ul>
<li>            <a href="#id">id</a>
<li>            <a href="#oid">oid</a>
<li>            <a href="#original">original</a>
<li>            <a href="#edge length">length</a>
<li>            <a href="#edge density">density or tension</a>
<li>            <a href="#fixed edge">fixed</a>
<li>            <a href="#edge constraints">constraints</a>
<li>            <a href="#on_constraint">on_constraint</a>
<li>            <a href="#__e_constraint_list">__e_constraint_list</a>
<li>            <a href="#edge boundary">boundary</a>
<li>            <a href="#on_boundary">on_boundary</a>
<li>            <a href="#wrap">wrap</a>
<li>            <a href="#edge color">color</a>
<li>            <a href="#edge noncontent">noncontent</a>
<li>            <a href="#bare edge">bare</a>
</ul></td><td><ul>
<li>            <a href="#show">show</a>
<li>            <a href="#no_refine">no_refine</a>
<li>            <a href="#orientation">orientation</a>
<li>            <a href="#edge vertices">vertices</a>
<li>            <a href="#midv">midv</a>
<li>            <a href="#edge facets">facets</a>
<li>            <a href="#edge valence">valence</a>
<li>            <a href="#backbody">backbody</a>
<li>            <a href="#frontbody">frontbody</a>
<li>            <a href="#dihedral">dihedral</a>
<li>            <a href="#edge tangent">tangent vector</a>
<li>            <a href="#quantity attribute">quantities</a>
<li>            <a href="#on_quantity">on_quantity</a>
<li>            <a href="#on_method_instance">on_method_instance</a>
<li>            <a href="#extra attributes">extra attributes</a>
</ul>
</td></tr></table>
<hr>
<a name="facets"></a><h2>Facets</h2>
  In the <a href="model.htm#soapfilm model">soapfilm model</a>,
  a facet is an oriented triangle defined by a cycle of three
  <a href="#edges">edges</a>.  
  In the <a href="model.htm#linear model">linear model</a>,
  a facet is a flat triangle.
  In the <a href="model.htm#quadratic model">quadratic
  model</a>, the facet is a curved surface defined by quadratic
  interpolation among the three facet corner vertices and the
  three edge midpoints.  In the <a href="model.htm#Lagrange model">
  Lagrange model</a>, 
  <a href="syntax.htm#lagrange_order">lagrange_order</a>
   interpolation is done among
  (lagrange_order+1)(lagrange_order+2)/2 vertices.
  Although individual facets are oriented, there are no
  restrictions on the orientations of adjacent facets.
  By default, a facet carries a surface tension energy equal
  to its area.
  <p>
  In the <a href="model.htm#string model">string model</a>,
  a facet is a chain of an arbitrary number of edges.  The chain
  need not be closed.  Usually a facet is defined in the string
  model in order to define a body, so the space dimension is 2
  and the facet is planar, one facet corresponding to a body.
  Facets carry no energy by themselves.
  <p>
  In the <a href="model.htm#simplex model">simplex model</a>,
  a facet is a simplex of dimension
   <a href="datafile.htm#surface dimension decl">surface_dimension</a>
   defined by surface_dimension+1 vertices.  The surface_dimension
   may be any dimension less than or equal to the 
   <a href="datafile.htm#space dimension decl">space_dimension</a>.
   The simplex is oriented according to the order of the vertices.
   By default, a simplex carries a surface tension energy
   proportional to its volume.
<p>
  Facets may  carry additional energy by having
  <a href="quants.htm">named quantity</a> energies
  applied to them.
  <p>
  The facets of the original surface are defined in the 
  <a href="datafile.htm#faces section">faces section</a> of the
  datafile.
  <p>
            Attributes:
<table><tr valign=top><td>
<ul>
<li>            <a href="#id">id</a>
<li>            <a href="#oid">oid</a>
<li>            <a href="#original">original</a>
<li>            <a href="#facet area">area</a>
<li>            <a href="#fixed facet">fixed</a>
<li>            <a href="#facet constraints">constraints</a>
<li>            <a href="#on_constraint">on_constraint</a>
<li>            <a href="#__f_constraint_list">constraint list</a>
<li>            <a href="#facet boundary">boundary</a>
<li>            <a href="#on_boundary">on_boundary</a>
<li>            <a href="#facet density">density or tension</a>
<li>            <a href="#facet color">color</a>
<li>            <a href="#frontcolor">frontcolor</a>
<li>            <a href="#backcolor">backcolor</a>
<li>            <a href="#no_refine">no_refine</a>
<li>            <a href="#facet noncontent">noncontent</a>
</ul></td><td><ul>
<li>            <a href="#facet edges">edges</a>
<li>            <a href="#facet vertices">vertices</a>
<li>            <a href="#facet bodies">bodies</a>
<li>            <a href="#frontbody">frontbody</a>
<li>            <a href="#backbody">backbody</a>
<li>            <a href="#facet valence">valence</a>
<li>            <a href="#facet normal">normal vector</a>
<li>            <a href="#facet phase">phase</a>
<li>            <a href="#quantity attribute">quantities</a>
<li>            <a href="#on_quantity">on_quantity</a>
<li>            <a href="#on_method_instance">on_method_instance</a>
<li>            <a href="#nodisplay">nodisplay</a>
<li>            <a href="#extra attributes">extra attributes</a>
</ul>
</td></tr></table>
<hr>
<a name="bodies"></a><h2>Bodies</h2>
            A body is a full-dimensional region of space. Bodies
are not triangulated.  Rather, they are determined by their boundary
<a href="#facets">facets</a> (or <a href="#edges">edges</a> in 2D). 
                 These facets are used for calculating body volume
                 and gravitational energy.  Only those facets needed
                 for correct calculation need be given. In the 
                 <a href="model.htm#string model">string
		 model</a>, usually a body corresponds to one facet.
		 Bodies of the original surface are defined in the
		 <a href="datafile.htm#bodies section">bodies section</a>
		 of the datafile.  
<p>
            Attributes:
<table><tr valign=top><td>
<ul>
<li>            <a href="#body facets">facets</a>
<li>            <a href="#id">id</a>
<li>            <a href="#body density">density</a>
<li>            <a href="#body volume">volume</a>
<li>            <a href="#target volume">target</a>
<li>            <a href="#volfixed">volfixed</a>
</ul></td><td><ul>
<li>            <a href="#actual_volume">actual_volumet</a>
<li>            <a href="#body volconst">volconst</a>
<li>            <a href="#body pressure">pressure</a>
<li>            <a href="#body phase">phase</a>
<li>            <a href="#extra attributes">extra attributes</a>
</ul>
</td></tr></table>
<hr>
<a name="facetedge"></a><h2>Facetedges</h2>
A facetedge is a pairing of a facet and one of its edges, with
orientation such that the edge orientation is consistent with
the facet orientation.  Facetedges are used internally by Evolver,
and are seldom of interest to the user.  They carry no energy.
The <a href="single.htm#C">C</a> command will sometimes refer to
facetedges if the surface is inconsistent.  "Facetedge" can
be used as an element generator. The attributes
available are id, edge, facet, and extra attributes.
<hr>
<hr>
<a name="element attributes"></a>
<h1>Element attributes</h1>
Below is a list of possible element attributes.  The first few apply to 
all types of elements.  Then come those applying specifically to vertices,
edges, facets, and bodies.  See <a href="#geometric elements">
Geometric elements</a> for lists of attributes for each type element.
<hr>
<h1>Attributes for all types of elements</h1>
<hr>
<a name="id"></a><h2>id</h2>
<a href="#geometric elements">Geometric element</a> read-only attribute.
The id of an element is a positive integer uniquely associated with
that element.  The Evolver will assign id's to elements read from
the datafile in the order they are read, unless the -i command line
option or <tt>keep_originals</tt> is in the top of the datafile, in which
case the datafile element number is the id.
  In either case, you can access the datafile id with the <a href="#original">
original</a> attribute.  Examples:
<pre>   list vertex where id < 10
   set edge color red where id == 4 or id == 6 or id == 9
   foreach facet ff do { printf "%g  %g %g %g\n",ff.id,ff.edge[1].id,
      ff.edge[2].id,ff.edge[3].id } 
</pre>
<hr>
<a name="oid"></a><h2>oid</h2>
<a href="#geometric elements">Geometric element</a> read-only attribute.
The oid of an element is the "oriented id" of an element as used in
an expression.  It is the <a href="#id">id</a> number signed according
to whether the use of the element is with the same or opposite orientation
as the way it is stored.  Example: to get an edge list for a facet
as in the datafile, use oid instead of id:
<pre>
   foreach facet ff do { printf "%g  %g %g %g\n",ff.id,ff.edge[1].oid,
      ff.edge[2].oid,ff.edge[3].oid } 
</pre>
<hr>
<a name="on_constraint"></a><h2>on_constraint</h2>
<a href="#vertices">Vertex</a>,
<a href="#edges">edge</a>, or
<a href="#facets">facet</a> 
read-only attribute.
<a href="syntax.htm#boolean ops">Boolean</a> attribute for whether an element is on a given
<a href="constrnt.htm#level set constraints">constraint</a>.
The full syntax of the attribute is "<tt>on_constraint</tt> <em>n</em>"
where <em>n</em> is the number of the constraint. Examples:
<pre>
   list edge where on_constraint 3
   print vertex[3].on_constraint 1
</pre>
<hr>
<a name="on_boundary"></a>
<a name="vertex boundary"></a><h2>on_boundary</h2>
<a href="#vertices">Vertex</a>,
<a href="#edges">edge</a>, or
<a href="#facets">facet</a> 
read-only attribute.
The status of whether an element is on a 
<a href="constrnt.htm#parametric boundaries">boundary</a> can be
queried with the <a href="syntax.htm#boolean ops">Boolean</a> attribute on_boundary.  Elements can be 
<a href="commands.htm#unset">unset</a>
from boundaries, but not set on them (since parameter values would be unknown).
Examples:
<pre>
  list vertex where on_boundary 1
  unset vertex boundary 2
</pre>
<hr>
<a name="on_quantity"></a><h2>on_quantity</h2>
<a href="#vertices">Vertex</a>,
<a href="#edges">edge</a>, or
<a href="#facets">facet</a> 
read-only attribute.
<a href="syntax.htm#boolean ops">Boolean</a> attribute for whether an element
contributes to a given
<a href="quants.htm#named quantities">named quantity</a>.
Actually, it tests whether the element is on any of the method instances
comprising a quantity.
The full syntax of the attribute is 
"<tt>on_quantity</tt> <em>quantityname</em>".
 Examples:
<pre>
   list facet where on_quantity  center_of_mass_x
   print vertex[3].on_quantity blue_area
</pre>
<hr>
<a name="on_method_instance"></a><h2>on_method_instance</h2>
<a href="#vertices">Vertex</a>,
<a href="#edges">edge</a>, or
<a href="#facets">facet</a> 
read-only attribute.
<a href="syntax.htm#boolean ops">Boolean</a> attribute for whether an element
contributes to a given
<a href="quants.htm#named methods">named method instance</a>.
The full syntax of the attribute is 
"<tt>on_method_instance</tt> <em>instancename</em>".
 Examples:
<pre>
   list facet where on_method_instance  center_of_mass_x_edges
   print vertex[3].on_method_instance blue_area_1
</pre>
<hr>
<a name="original"></a><h2>original</h2>
<a href="#geometric elements">Geometric element</a> read-only attribute.
For elements read from the datafile, this is the number given to the
element in the datafile, which may be overridden by an explicit original
attribute value in the datafile line defining the element.  The value is
inherited by all elements of the same type that result from subdivision.
For elements otherwise
generated at run time, the original attribute value is -1.
Example: to show which facets descended from face 1 in the datafile:
<pre>
   set facet color red where original == 1
</Pre>
<hr>
<a name="quantity attribute"></a><h2>Named quantities as attributes</h2>
<a href="#geometric elements">Geometric element</a> read-only attribute.
<a href="quants.htm">Named quantities</a> and
<a href="quants.htm">method instances</a> can be applied to geomtric
elements either in the <a href="datafile.htm">datafile</a> (by
adding the quantity or method name to the line defining an element) or
with the <a href="commands.htm#set">set</a> command.
 Nonglobal quantities
or methods can be <a href="commands.htm#unset">unset</a>
 for individual elements. The values for individual
elements can be accessed using attribute syntax. 
Examples: Suppose there is a named quantity "xmoment" that can be 
evaluated for facets.  Then one could give commands
<pre>
   foreach facet do printf "%g %f\n",id,xmoment
   list facet where xmoment > 4
   set facet quantity xmoment where original == 1
   unset facet quantity xmoment
</pre>
<hr>
<a name="extra attributes"></a><h2>Extra attributes</h2>
<a href="#geometric elements">Geometric element</a> read-write attributes.
If <a href="elements.htm#extra attributes">extra attributes</a>
 have been defined in the
<a href="datafile.htm#extra decl">datafile</a> or with a 
<a href="commands.htm#define">define</a> command,
they can be accessed with attribute syntax. Extra attribute
values in the datafile can be initialized for an element
by adding the attribute name and value to the line defining the
element.  Extra attributes may also be arrays, initialized
with standard nested bracket syntax. Example:
<pre>
  define vertex attribute oldx real
  define vertex attribute vmat real[3][2]
  vertices
  1   2 0 0 oldx 3 vmat {{1,2},{3,4},{5,6}}
</pre>
The command language can use the name with the same syntax as built-in
attributes, and can define extra attributes at run time:
<pre>
  set vertex oldx x
  define edge attribute vibel real[2]
  set edge[2] vibel[1] 3; set edge[2] vibel[2] 4
  print vertex[3].oldx
</pre>
Attribute array sizes may be changed at run time by executing another
definition of the attribute, but the number of dimensions must be the same.
Array entry values are preserved as far as possible when sizes are
changed.
<p>
The value of an extra attribute can also be calculated by user-supplied
code. The attribute definition is followed by the keyword "function" and
then the code in brackets. In the code, the keyword "self" is used
to refer to the element the attribute is being calculated for. 
Example: To implement the lowest z value of a facet as an attribute:
<pre> define facet attribute minz real function
	 {self.minz := min(self.vertex,z);}
</pre>
<hr>
<h1>Vertex-specific attributes</h1>
<hr>
<a name="coordinates"></a><h2>Vertex coordinates</h2>
<a href="#vertices">Vertex</a> read-write attribute. The coordinates of
a vertex are its location in space.  By default, these are Euclidean
coordinates, but they may represent any coordinate system if the
user defines appropriate length, area, volume, etc. integrals.
But graphics always treat the coordinates as Euclidean.  The
individual coordinates may be referred to as x,y,z,w or x1,x2,x3,... 
In the <a href="datafile.htm#vertices section">vertices section</a>
of the datafile,
vertices of the original surface have their coordinates given 
 unless
they are on a <a href="constrnt.htm#parametric boundaries"> parametric
boundary</a>.  Vertices on parametric boundaries have their coordinates
calculated from their parameter values.  Coordinates may be read or
modified with the command language.
Examples:
<pre>
  foreach vertex do printf "%g  %f %f %f\n",id,x,y,z
  set vertex z z+.1*x
</pre>
<hr>
<a name="parameter values"></a><h2>Vertex parameters</h2>
<a href="#vertices">Vertex</a> read-write attribute.
 Vertices on parametric boundaries are located according to the
parameter values.  Parameters are referred to as p1,p2,...  Usually
only p1 is used, since one-parameter curves used as boundary wires
are most common.  Such vertices in the original surface have
their parameter values given in the 
<a href="datafile.htm#vertices section">vertices section</a> of the datafile
instead of their coordinates. Vertex parameters may be read or modified
with the command language. Example:
<pre>
  foreach vertex do printf "%g %f\n",id,p1
  set vertex[1] p1 1.2
</pre>
<hr>  
<a name="fixed vertex"></a><h2>Fixed vertices</h2>
<a href="#vertices">Vertex</a> read-write attribute.
A fixed vertex will not move during iteration (except to satisfy
<a href="constrnt.htm#level set constraints">level set constraints</a>)
 or other operations, except if coordinates
are explicitly changed by a "<a href="commands.htm#set">set vertices ...</a>"
command.  
A vertex may be declared fixed in the datafile
by putting <tt>fixed</tt> on the line defining the vertex, after the
coordinates.  From the command prompt, one can fix or unfix vertices
with the <a href="commands.htm#fix">fix</a> and
<a href="commands.htm#unfix">unfix</a> commands.
Examples:
<pre>
  list vertex where fixed
  fix vertex where on_constraint 1
  unfix vertices where on_boundary 1
</pre>
<hr>
<a name="vertex constraints"></a><h2>Vertex constraints</h2>
<a href="#vertices">Vertex</a> read-write attribute. 
          A 
<a href="constrnt.htm#level set constraints">level-set constraint</a>
 is a restriction of vertices to
lie on the zero level-set of a function.  A constraint declared
NONNEGATIVE in the 
<a href="datafile.htm#constraint decl">datafile</a>
 forces a vertex to have a nonnegative
value of the function.  A NONPOSITIVE constraint forces a vertex
to have a nonpositive value of the function.
A constraint may be declared GLOBAL,
          in which case it applies to all vertices.  A vertex may
    be put on a constraint in the <a href="datafile.htm#vertices section">
vertices section</a>
    of the datafile by listing the constraint numbers after the keyword
    "<tt>constraint</tt>".
	  See  mound.fe for an example.
In commands, the status of a vertex can be read with the 
<a href="#on_constraint">on_constraint</a> and 
<a href="#hit_constraint">hit_constraint</a>
attributes.  The status can be changed with the 
<a href="commands.htm#set">set</a> or <a href="commands.htm#unset">unset</a>
 commands.  
Examples:
<pre>
  list vertex where on_constraint 2
  set vertex constraint 1 where id == 4 or id == 6
  unset vertex constraint 3
</pre>
<hr>
<a name="hit_constraint"></a><h2>Hit_constraint</h2>
<a href="#vertices">Vertex</a> read-only attribute.
<a href="syntax.htm#boolean ops">Boolean</a> attribute for whether a vertex exactly satisfies a given
<a href="constrnt.htm#level set constraints">constraint</a>.  Particularly
meant for vertices on 
<a href="constrnt.htm#one-sided constraints">one-sided constraints</a>.
The full syntax of the attribute is "<tt>hit_constraint</tt> <em>n</em>"
where <em>n</em> is the number or name of the constraint. Examples:
<pre>
   list vertex where hit_constraint 3
   print vertex[3].hit_constraint 1
</pre>
<hr>
<a name="__v_constraint_list"></a><h2>__v_constraint_list</h2>
This read-only attribute gives access to the list of constraints a
vertex is on. __v_constraint_list[1] is the number of constraints in
the list, followed by the numbers of the constraints.  Note that for
named constraints, the internally assigned numbers are used.
<hr>
<a name="bare vertex"></a><h2>Bare vertex</h2>
<a href="#vertices">Vertex</a> read-write attribute. 
Declaring a vertex "bare" says that a vertex does not have 
an adjacent edge (<a href="model.htm#string model">string model</a>)
or an adjacent facet (<a href="model.htm#soapfilm model">soapfilm model</a>).
  Useful in avoiding warning messages.  A vertex may be declared bare
  in the <a href="datafile.htm#vertices section">vertices section</a>
  of the datafile by adding the keyword <tt>bare</tt> to the line
  defining the vertex.
Example:
<pre>
   list vertex where bare
</pre>
<hr>
<a name="mid_edge"></a><h2>Mid_edge</h2>
<a href="#vertices">Vertex</a> read-only attribute.  True (1) if the
vertex is on an edge but not an endpoint.  Relevant in the 
<a href="model.htm#quadratic model">quadratic model</a> or
<a href="model.htm#Lagrange model">Lagrange model</a>.
Example:
<pre>
   list edge[23].vertex vv where vv.mid_edge
</pre>
<hr>
<a name="mid_facet"></a><h2>Mid_facet</h2>
<a href="#vertices">Vertex</a> read-only attribute.  True (1) if the
vertex is an interior control point of a facet in the
<a href="model.htm#Lagrange model"><b>Lagrange model</b></a>.
Example:
<pre>
   list facet[23].vertex vv where vv.mid_facet
</pre>
<hr>
<a name="mean_curvature"></a><h2>mean_curvature</h2>
<a href="#vertices">Vertex</a> read-only attribute, available in the
string and soapfilm model. The mean curvature is calculated as the 
magnitude of the gradient of area (or length in the string model)
divided by the area (or length) associated with the vertex, which is
one-third the area of the facets adjacent to the vertex (or one-half of
the length of adjacent edges).  It is divided by 2 in the soapfilm model
to account for the "mean" part of the definition.  The sign of the
mean curvature is relative to the orientation of the first adjacent
facet (or edge) Evolver finds. This calculation can be done even if the 
vertex is on a triple junction or other non-planar topology, even if it 
doesn't interpret well as mean curvature there. 
<hr>
<a name="vertex edges"></a><h2>Vertex edges</h2>
<a href="#vertices">Vertex</a> read-only attribute. 
<a href="commands.htm#generators">Generates</a>
edges
attached to a vertex, oriented so vertex is the edge tail. The edges
are in no particular order.
Examples:
<pre>
  list vertex[3].edges
  foreach vertex vv do { foreach vv.edge do print id }
</pre> 
Always use "<tt>.edges</tt>" to generate vertex edges; using "edges" with
an implicit element, as in "<tt>foreach vertex do list edges</tt>"
will list all edges in the surface over and over again.
<hr>
<a name="vertex facets"></a><h2>Vertex facets</h2>
<a href="#vertices">Vertex</a> read-only attribute. 
<a href="commands.htm#generators">Generates</a>
facets
attached to a vertex, with positive facet orientation. The facets are
in no particular order.
Examples:
<pre>
  list vertex[3].facets
  foreach vertex vv do { foreach vv.facet do print id }
</pre>
Always use "<tt>.facets</tt>" to generate vertex facets; using "facets" with
an implicit element, as in "<tt>foreach vertex do list facets</tt>"
will list all facets in the surface over and over again.
<hr>
<a name="vertex valence"></a><h2>Vertex valence</h2>
<a href="#vertices">Vertex</a> read-only attribute. 
The valence of a vertex is defined to be the number of edges
it is a member of.  Example:
<pre>
  list vertices where valence == 6
  histogram(vertex,valence)
</pre>
<hr>
<a name="axial_point"></a><h2>axial_point</h2>
<a href="#vertices">Vertex</a> read-write attribute.
Certain <a href="model.htm#symmetry groups">symmetry groups</a>
(e.g. <a href="model.htm#cubocta">cubocta</a> or
<a href="model.htm#rotate symmetry group">rotate</a>)
have axes of rotation that are invariant under some non-identity
group element.  A vertex on such an axis must be labeled in the
datafile with the attribute <tt>axial_point</tt>, since these
vertices pose special problems for the wrap algorithms.
If you are only using a subgroup of the full group, then you
only need to label vertices on the axes of the subgroup.
The net wrap around a facet containing an axial point need not
be the identity. Edges out of an
axial point must have the axial point at their tail, and must have zero 
wrap.  Facets including an axial point must have the axial point at
the tail of the first edge in the facet.  It is your responsibility 
to use constraints to guarantee the vertex remains on the axis.
<hr>
<a name="triple_point"></a><h2>Triple_point</h2>
<a href="#vertices">Vertex</a> read-write attribute. For telling Evolver
three films meet at this vertex.  Used when effective_area is on to
adjust motion of vertex by making the effective area around the vertex
1/sqrt(3) of actual.
<hr>
<a name="tetra_point"></a><h2>Tetra_point</h2>
<a href="#vertices">Vertex</a> read-write attribute. For telling Evolver
six films meet at this vertex.  Used when effective_area is on to
adjust motion of vertex by making the effective area around the vertex
1/sqrt(6) of actual.
<hr>
<a name="vertexnormal"></a><h2>vertexnormal</h2>
<a href="#vertices">Vertex</a> read-only attribute.  This is an indexed
attribute consisting of the components of a normal to the surface at
a vertex, normalized to unit length.  This is the same normal as used
in <a href="toggle.htm#hessian_normal">hessian_normal</a> mode.  For
most vertices in the soapfilm model, the normal is the number average
of the unit normals of the surrounding facets.  Along triple edges
and such where hessian_normal has a multi-dimensional normal plane,
the vertexnormal is the first basis vector of the normal plane.
Example: To print the normal components of vertex 3:
<pre> print vertex[3].vertexnormal[1];
 print vertex[3].vertexnormal[2];
 print vertex[3].vertexnormal[3]; </pre>
The vertexnormal can also be printed as an array:
<pre> print vertex[3].vertexnormal </pre>
<hr>
<a name="vertex dihedral"></a>
<h2>dihedral</h2>
<a href="#geometric elements">vertex</a> read-only attribute in the string 
model.  This is the angle from straightness of two edges at a vertex.
If there are less than two edges, the value is 0.  If two or more
edges, the value is 2*asin(F/2), where F is the magnitude of the net
force on the vertex, assuming each edge has tension 1.  Upper limit
clamped to pi.
<hr>
<a name="sqcurve"></a>
<a name="sq_mean_curv"></a><h2>Squared mean curvature</h2>
<a href="#geometric elements">Geometric element</a> read-only attribute.
SQCURVE is the squared mean curvature at a vertex.  Valid only if squared mean
curvature is part of the energy or in a quantity (but not the
star versions of the squared mean curvature methods).
<hr>
<a name="__force"></a><h2>__force</h2>
<a href="#vertices">Vertex</a> read-only attribute.  This is an indexed
attribute giving the components of the force (negative energy
gradient as projected to constraints).  Meant for debugging use.
This is not directly used for the motion; see <a href="#__velocity">
__velocity</a>.
<hr>
<a name="__velocity"></a><h2>__velocity</h2>
<a href="#vertices">Vertex</a> read-only attribute.  This is an indexed
attribute giving the components of the vector used for vertex motion
in the 'g' command.  The motion of a vertex is the scale factor times
this vector.  The velocity vector is calculated from the force vector
by applying area normalization, mobilty, etc.  Also, if a vertex is
on a boundary, the velocity is projected back to parameters.
<hr>
<a name="raw_velocity"></a><h2>raw_velocity</h2>
<a href="#vertices">Vertex</a> read-only attribute Internal vertex attribute 
used when one-sided level-set constraints
are present, so the Lagrange multipliers for said constraints
can be calculated.  This is the velocity before any projection to
volume or level-set constraints.  Not of interest to the ordinary
user.
 
<hr>
<h1>Edge-specific attributes</h1>
<hr>
<a name="length"></a>
<a name="edge length"></a><h2>Length</h2>
<a href="#edges">Edge</a> read-only attribute. Length of the edge.
Examples:
<pre> histogram(edge where on_constraint 1, length)
 print edge[3].length
</pre>
<hr>
<a name="edge density"></a><h2>Edge density or tension</h2>
<a href="#edges">Edge</a> read-write attribute.  
"Density" and "tension" are synonyms. 
Energy per unit
length of edge. Default 1 in string model, 0 in soapfilm model.
The tension may be modified in the datafile 
<a href="datafile.htm#edges section">edges section</a> by
adding "<tt>tension</tt> <em>value</em>" to the line defining the edge.
The tension may be modified with the <a href="commands.htm#set">set</a>
command.
Examples:
<pre>  set edge tension .5 where id < 10
  loghistogram(edge,density)
</pre>
<hr>
<a name="fixed edge"></a><h2>Fixed edge</h2>
<a href="#edges">Edge</a> read-write attribute.
For an edge to be "fixed" means that any vertex or edge created
by refining the edge will inherit the "fixed" attribute.
Declaring an edge fixed in the datafile will also fix all vertices
on the edge.  However, fixing an edge from the command prompt
will not fix any vertices.
An edge may be declared fixed in the datafile 
<a href="datafile.htm#edges section">edges section</a>
by adding <tt>fixed</tt> to the line defining the edge.
 From the command prompt, one can fix or unfix edges
with the <a href="commands.htm#fix">fix</a> and
<a href="commands.htm#unfix">unfix</a> commands.
Examples:
<pre>  fix edge where on_constraint 1
  list edges where fixed
  set edge color red where fixed
  unfix edge[3]
</pre>
<hr>
<a name="edge constraints"></a><h2>Edge constraints</h2>
<a href="#edges">Edge</a> read-write attribute.
An edge may be put on a <a href="constrnt.htm#level set constraints">
level set constraint</a>.
For such an edge,
any vertices and edges generated
by refining the edge will inherit the constraint.  An edge may
be put on constraints in the 
<a href="datafile.htm#edges section">edges section</a> of the datafile
by listing the constraint numbers after the keyword <tt>constraint</tt>
on the line defining the edge.
Putting an edge
on a constraint does not put its existing vertices on the constraint.
In commands, the status of an edge can be read with the 
"<a href="#on_constraint">on_constraint</a>"
attribute.  The status can be changed with the 
<a href="commands.htm#set">set</a> or <a href="commands.htm#unset">unset</a>
 commands.
Examples:
<pre>
  list edge where on_constraint 2
  set edge constraint 1 where id == 4 or id == 6
  unset edge constraint 3
</pre>
<hr>
<a name="__e_constraint_list"></a><h2>__e_constraint_list</h2>
This read-only attribute gives access to the list of constraints an
edge is on. __e_constraint_list[1] is the number of constraints in
the list, followed by the numbers of the constraints.  Note that for
named constraints, the internally assigned numbers are used.
<hr>
<a name="edge boundary"></a><h2>Edge boundary</h2>
<a href="#edges">Edge</a> read-write attribute.
          If an edge is on a 
<a href="constrnt.htm#boundary">parametric boundary</a>,
 then any edges and vertices
          generated from the edge will inherit the boundary.  By default,
          new vertex parameter values are calculated by extrapolating
          from one end of the edge.  This avoids wrap-around problems
          that would arise from interpolating parameter values.  But if
          the interp_bdry_param toggle is on, then interpolation is used.
The status of whether an edge is on a 
boundary can be
queried with the <a href="syntax.htm#boolean ops">Boolean</a> attribute <a href="#on_boundary">on_boundary</a>.
  Edges can be <a href="commands.htm#unset">unset</a>
from boundaries, and set on them (but care is needed to do this properly).
Examples:
<pre>
  list edges where on_boundary 1
  unset edges boundary 2
</pre>
<hr>
<a name="wrap"></a><h2>Edge wrap</h2>
<a href="#edges">Edge</a> read-write attribute. When a 
<a href="model.htm#symmetry groups">symmetry group</a>
is in effect (such as the <a href="model.htm#torus model">torus model</a>)
 and an edge crosses the boundary of a fundamental domain,
the edge is labelled with the group element that moves the edge head
vertex to its proper position relative to the tail vertex.  The label
is internally encoded as an integer, the encoding peculiar 
to each symmetry group. 
Edge wrappings are set in the <a href="datafile.htm#edges section">datafile</a>.
The <a href="model.htm#torus model">torus model</a>
 has its own peculiar wrap representation in the datafile:
<tt>*</tt> for no wrap, <tt>+</tt> for positive wrap, and <tt>-</tt>
for negative wrap.
Wraps are maintained automatically by Evolver during surface manipulations.
The numeric edge wrap values can be queried with attribute syntax. Example:
<pre>
  list edge where wrap != 0
</pre>
Unfortunately, the torus model wraps come out rather opaquely, since
one cannot print hex.  The torus wrap number is the sum of numbers
for the individual directions: +x = 1; -x = 31; +y = 64; -y = 1984;
+z = 4096; -z = 127040.
Caution: even though this attribute can be written by the user at runtime,
only gurus should try it.
<hr>
<a name="edge color"></a><h2>Edge color</h2>
<a href="#edges">Edge</a> read-write attribute.   
<a href="syntax.htm#colors">Color</a> for graphics.  
The default color is black. Color may be set in the 
<a href="datafile.htm#edges section">datafile</a>, or with
the <a href="commands.htm#set">set</a> command.
In <a href="graphics.htm#geomview">geomview</a>, the edge color
will show up only for edges satisfying the 
<a href="commands.htm#show">show</a> edge condition, and then
they will have to compete with the edges geomview draws, unless you
turn off geomview's drawing of edges with "ae" in the geomview window.
Examples:
<pre>
  set edge color red where length > 1
  show edge where color != black
</pre>
<hr>
<a name="noncontent"></a>
<a name="edge noncontent"></a><h2>Noncontent</h2>
<a href="#edges">Edge</a> read-write attribute.  When set, indicates
this facet should not be used in volume calculations in the soapfilm model
or facet area calculations in the string model.  Useful, for example,
if you want to have edges be part of a body boundary for display purposes,
but want to use constraint integrands for greater accuracy in volume
calculations.
Example:
<pre>   set edge noncontent where on_constraint 1
</pre>
<hr>
<a name="bare edge"></a><h2>Bare edge</h2>
<a href="#edges">Edge</a> read-write attribute. 
Declaring an edge "bare" indicates that an edge does not have an
adjacent facet (soapfilm model).  Best declared in the
<a href="datafile.htm#edges section">datafile</a>, by adding the
keyword <tt>bare</tt> to the line defining an edge.
  Useful in avoiding warning
messages.   Bare edges are useful to show wires, frameworks, outlines,
etc. in graphics. Example:
<pre>
  list edge where bare
</pre>
<hr>
<a name="no_refine"></a><h2>No_refine</h2>
<a href="#edges">Edge</a> and <a href="#facets">facet</a>
read-write Boolean attribute.  An edge with the "no_refine" attribute
will not be refined by the <a href="single.htm#r">r</a> command.
This is useful for avoiding needless refining of lines or planes
that are used only for display.   Giving a facet the no_refine
attribute has no effect except that edges created within the
facet by refining will inherit the no_refine attribute.  So to
avoid refinement of a plane, all edges and facets in the plane
must be given the no_refine attribute.  The no_refine attribute
may be specified on the datafile line for an edge or facet, or
the <a href="commands.htm#set">set</a> command may be used.
Examples:
<pre>  set edge no_refine where fixed
  unset edge[2] no_refine
  list edge where no_refine
  print edge[3].no_refine
</pre>
<a name="show"></a><h2>Show</h2>
<a href="#edges">Edge</a> and <a href="#facets">facet</a> 
read-only Boolean attribute giving the current status of an
edge or facet according to the <href a="commands.htm#show>show edge</a>
 or <href a="commands.htm#show">show facet</a>
criterion in effect.
<hr>
<a name="edge orientation"></a><h2>Edge orientation</h2>
<a href="#edges">Edge</a> read-write attribute. 
              Controls  the sign of oriented integrals on
	      an edge.  Value +1 or -1.  Useful when triangulation
manipulations create an edge going the wrong way.
Example:
<pre>  set edge[2] orientation -1
</pre>
<hr>
<a name="edge vertices"></a><h2>Edge vertices</h2>
<a href="#edges">Edge</a> read-only attribute. Acts as a
<a href="commands.htm#generators">generator</a>
 for the two endpoints in 
the <a href="model.htm#linear model">linear</a> and 
<a href="model.htm#quadratic model">quadratic</a> models,
 and for all vertices on an edge
in the <a href="model.htm#Lagrange model">Lagrange</a> and 
<a href="model.htm#simplex model">simplex</a> models.
Example:
<pre>
   list edge[2].vertices
   list edge ee where ee.vertex[1].on_constraint 1 
</pre>
<hr>
<a name="midv"></a><h2>Edge midv</h2>
<a href="#edges">Edge</a> read-only attribute.
In the <a href="model.htm#quadratic model">quadratic model</a>, gives
the id of the midpoint vertex of an edge.  Example:
<pre>  print edge[23].midv </pre>
<hr>
<a name="edge facets"></a><h2>Edge facets</h2>
<a href="#edges">Edge</a> read-only attribute. 
<a href="commands.htm#generators">Generates</a>
facets
attached to an edge, in order around the edge when meaningful,
 with facet orientation agreeing with edge orientation. 
Examples:
<pre>
   list edge[2].facets
   foreach edge ee do print max(ee.facets,area)
</pre>
<hr>
<a name="edge valence"></a><h2>Edge valence</h2>
<a href="#edges">Edge</a> read-only attribute.
The valence of an edge is the number of facets adjacent to it.
Examples:
<pre>  list edges where valence == 1
  refine edge where valence != 2
</pre>
<hr>
<a name="dihedral"></a><h2>Dihedral</h2>
<a href="#edges">Edge</a> read-only attribute.
The angle in radians between the normals of two facets on an edge. Zero if there
are not exactly two facets.  This attribute is not stored, but
recalculated each time it is used.  If there are not exactly two facets on
the edge, the value is 0.  
<hr>
<a name="edge tangent"></a><h2>Edge tangent</h2>
<a href="#edges">Edge</a> read-only attribute. The components of the edge vector
in the <a href="model.htm#linear model">linear model</a> can be accessed
as edge attributes x,y,z or x1,x2,x3,.... In a command, the vector between
edge endpoints is used in <a href="model.htm#quadratic model">quadratic model</a>
or <a href="model.htm#Lagrange model">lagrange model</a>.  But when used in an
integral, the tangent is evaluated at the Gaussian integration points.
Not defined in the
<a href="model.htm#simplex model">simplex model</a>. Example to list nearly
vertical edges:
<pre>   list edges where z^2 > 10*(x^2 + y^2)
</pre>
<hr>
<h1>Facet-specific attributes</h1>
<hr>
<a name="facet area"></a><h2>Facet area</h2>
<a href="#facets">Facet</a> read-only attribute.
The area of the facet.  Example:
<pre>  list facet where area < .1
</pre>
<hr>
<a name="fixed facet"></a><h2>Fixed facet</h2>
<a href="#facets">Facet</a> read-write attribute.
For a facet to be "fixed" means that any vertex, edge, or facet created
by refining a facet will inherit the fixed attribute.  Fixing a facet
in the datafile or at the command prompt does not fix any edges or
vertices.
A face may be declared fixed in the datafile
by putting <tt>fixed</tt> on the line defining the face, after the
coordinates.  From the command prompt, one can fix or unfix facets
with the <a href="commands.htm#fix">fix</a> and
<a href="commands.htm#unfix">unfix</a> commands.
<hr>
<a name="facet density"></a>
<a name="tension"></a>
<a name="facet tension"></a><h2>Facet tension or density</h2>
<a href="#facets">Facet</a> read-write attribute.  
Energy per unit
area of facet; surface tension. 
Default 0 in <a href="model.htm#string model">string model</a>,
 1 in <a href="model.htm#soapfilm model">soapfilm model</a>.
 May be set in the datafile by adding "<tt>tension</tt> <em>value</em>"
 to the line defining the facet.  The density is inherited by any
 facets generated by refining.  "Tension" and "density" are synonyms.
Examples:
<pre>
  set facet tension 3 where original == 1
  list facet where density < .4
</pre>
<hr>
<a name="facet constraints"></a><h2>Facet constraints</h2>
<p>
<a href="#facets">Facet</a> read-write attribute.
Putting a facet on a 
<a href="constrnt.htm#level set constraints">constraint</a>
 means that every vertex, edge, or facet
generated by refining the facet will inherit that constraint.  Setting
a facet on a constraint does not set any of its existing edges or vertices
on the constraint.  Facets may be put on constraints in the 
<a href="datafile.htm#faces section">datafile</a> by listing the 
constraint numbers after the keyword <tt>constraint</tt> on the line
defining the facet, or with the
<a href="commands.htm#set">set</a> command.  They may be removed
with the <a href="commands.htm#unset">unset</a> command.
Examples:
<pre>
  list facets where on_constraint 1
  set facet[2] constraint 2
  unset facet constraint 1
</pre>
<hr>
<a name="__f_constraint_list"></a><h2>__f_constraint_list</h2>
This read-only attribute gives access to the list of constraints a
facet is on. __f_constraint_list[1] is the number of constraints in
the list, followed by the numbers of the constraints.  Note that for
named constraints, the internally assigned numbers are used.
<hr>
<a name="facet boundary"></a><h2>Facet boundary</h2>
<a href="#facets">Facet</a> read-write attribute.
          If a facet is on a 
<a href="constrnt.htm#boundary">parametric boundary</a>,
 then any facets, edges, and vertices
          generated from the facet will inherit the boundary. By default,
          new vertex parameter values are calculated by extrapolating
          from one vertex of the facet.  This avoids wrap-around problems
          that would arise from interpolating parameter values.  But if
          the interp_bdry_param toggle is on, then interpolation is used.
The status of whether a facet is on a 
boundary can be
queried with the <a href="syntax.htm#boolean ops">Boolean</a> attribute <a href="#on_boundary">on_boundary</a>.
  Facets can be <a href="commands.htm#unset">unset</a>
from boundaries, and set on them (but care is needed to do this properly).
Examples:
<pre>
  list facets where on_boundary 1
  unset facets boundary 2
</pre>
<hr>
<a name="facet color"></a><h2>Facet color</h2>
<a href="#facets">Facet</a> read-write attribute.   
<a href="syntax.htm#colors">Color</a> of both sides of facet for graphics.
Default is white.
Datafile example:
<pre>  Faces
  1   1 2 3 color red
</pre>
Command examples:
<pre>  list facets where color == red
  set facet[3] color green
  set facet color red where area > 2
</pre>
<hr>
<a name="frontcolor"></a><h2>Frontcolor</h2>
<a href="#facets">Facet</a> read-write attribute.   
<a href="syntax.htm#colors">Color</a> of positive side of facet for graphics.
Default is white.
Datafile example:
<pre>  Faces
  1   1 2 3 frontcolor green backcolor red
</pre>
Command examples:
<pre>  list facets where frontcolor == red
  set facet[3] frontcolor green
  set facet frontcolor red where area > 2
</pre>
<hr>
<a name="backcolor"></a><h2>Backcolor</h2>
<a href="#facets">Facet</a> read-write attribute.   
<a href="syntax.htm#colors">Color</a> of negative side of facet for graphics.
Default is white.  Set also when the "color" attribute is set.
Datafile example:
<pre>  Faces
  1   1 2 3 frontcolor green backcolor red
</pre>
Command examples:
<pre>  list facets where backcolor == red
  set facet[3] backcolor green
  set facet backcolor red where area > 2
</pre>
<hr>
<a name="facet vertices"></a><h2>Facet vertices</h2>
<a href="#facets">Facet</a> read-only attribute. 
<a href="commands.htm#generators">Generates</a>
vertices
around a facet, oriented as the facet boundary. "vertex" and
"vertices" are synonymous.  In the string model, if the facet is not
a closed loop of edges, the vertices will be generated in order
from one end.  If the given facet has negative orientation, then
the vertices will be generated accordingly. Example:
<pre>  list facet[3].vertex
</pre>
<hr>
<a name="facet edges"></a><h2>Facet edges</h2>
<a href="#facets">Facet</a> read-only attribute. 
<a href="commands.htm#generators">Generates</a>
edges
around a facet, oriented as the facet boundary.  "edge" and "edges"
are synonymous. In the string model, if the edges of the facet do not 
make a closed loop, then the edges will be listed in order starting
from one end.  If the given facet has negative orientation, the edges will
be listed accordingly.  Example:
<pre>  list facet[3].edges
  list facet[-3].edges
</pre>
<hr>
<a name="facet bodies"></a><h2>Facet bodies</h2>
<a href="#facets">Facet</a> read-only attribute. 
<a href="commands.htm#generators">Generates</a>
bodies
around a facet, first the body the facet is positive boundary of,
then the body the facet is negative boundary of, if they exist. 
"body" and "bodies" are synonymous.  Example:
<pre>
list facet[3].bodies
</pre>
<hr>
<a name="frontbody"></a><h2>Frontbody</h2>
<a href="#facets">Facet</a> read-write attribute. 
The id of the body of which the facet is on the
		 positively oriented boundary.  Useful
after creating a new body with the <a href="commands.htm#new_body">
new_body</a> command. As a read attribute, the value is 0 if
there is no such body. Examples:
<pre>
  newb := new_body; set facet frontbody newb where color == red
  print facet[2].frontbody
</pre>
Frontbody also works for adding edges to a facet in the string model,
but the added edge must be attach to one end of the edge arc, or
close the arc.
<hr>
<a name="backbody"></a><h2>Backbody</h2>
<a href="#facets">Facet</a> read-write attribute. 
The id of the body of which the facet is on the
		 negatively oriented boundary.  Useful
after creating a new body with the <a href="commands.htm#new_body">
new_body</a> command. As a read attribute, the value is 0 if
there is no such body. Examples:
<pre>
  newb := new_body; set facet[1] frontbody newb;
  set facet backbody newb where id == 2 or id == 4;
  print facet[4].backbody
</pre>
Backbody also works for adding edges to a facet in the string model,
but the added edge must be attach to one end of the edge arc, or
close the arc.
<hr>
<a name="facet valence"></a><h2>Facet valence</h2>
<a href="#facets">Facet</a> read-only attribute.
The valence of a facet is the number of edges (or vertices)
that it contains.  Most useful in the 
<a href="model.htm#string model">string model</a>.  Example:
<pre>
  list facets where valence != 3
</pre>
<hr>
<a name="no_display"></a>
<a name="nodisplay"></a><h2>Nodisplay</h2>
<a href="#facets">Facet</a> read-write attribute.   
When set, suppresses the display of the facet in graphics.  Can
be set in the <a href="datafile.htm#faces section">datafile</a>
by adding <tt>nodisplay</tt> to the line defining the facet. Can
also be manipulated by the <a href="commands.htm#set">set</a>
and <a href="commands.htm#unset">unset</a> commands. <tt>No_display</tt>
is a synonym provided since that's what I kept typing in.
 Example:
<pre>   set facet nodisplay where color != red
</pre>
<hr>
<a name="orientation"></a><h2>Orientation</h2>
<a href="#facets">Facet</a> read-write attribute. 
              Controls  the sign of oriented integrals on
	      a facet.  Value +1 or -1.  Useful when triangulation
manipulations create a facet with an undesired orientation.
Example:
<pre>   set facet[123] orientation -1
</pre>
<hr>
<a name="noncontent"></a>
<a name="edge noncontent"></a><h2>Noncontent</h2>
<a name="facet noncontent"></a><h2>Noncontent</h2>
<a href="#facets">Facet</a> read-write attribute.  When set, indicates
this facet should not be used in volume calculations.  Useful, for example,
if you want to have facets be part of a body boundary for display purposes,
but want to use constraint integrands for greater accuracy in volume
calculations.
Example:
<pre>   set facet noncontent where on_constraint 1
</pre>
<hr>
<a name="facet phase"></a><h2>Phase</h2>
<a href="#facets">Facet</a> read-write attribute. 
     If there is a <a href="datafile.htm#phase decl">phasefile</a>,
      this attribute determines the
edge tension of an edge between two facets in the string model.
Example:
<pre>   list facet where phase == 1
</pre>
<hr>
<a name="facet normal"></a><h2>Facet normal vector</h2>
<a href="#facets">Facet</a> read-only attribute. 
The components of the facet normal vector may be referred to as
x,y,z or x1,x2,x3,... 
in the <a href="model.htm#linear model">linear model</a>.  Length is equal
to facet area.  
In <a href="model.htm#quadratic model">quadratic model</a>
or <a href="model.htm#Lagrange model">lagrange model</a>, only the three facet
corner vertices are used to calculate the normal.  When used in 
integrals, the normal is calculated at each integration points.
  Not defined in 
<a href="model.htm#simplex model">simplex model</a>. 
<hr>
<hr>
<h1>Body-specific attributes</h1>
<a name="body facets"></a><h2>Body facets</h2>
<a href="#bodies">Body</a> read-only attribute. 
<a href="commands.htm#generators">Generates</a>
facets
bounding a body, with proper facet orientation with respect to the body. 
Example:
<pre>  list body[1].facets
</pre>
<hr>
<a name="body density"></a><h2>Body density</h2>
<a href="#bodies">Body</a> read-write attribute. 
              Density used for gravitational potential energy.
It can be set in the <a href="datafile.htm#bodies section">bodies section</a>
of the datafile, or with the <a href="commands.htm#set">set</a> command,
or by assignment.  Command examples:
<pre>  print body[2].density
  set body density 3
  body[2].density := 5
</pre>
<hr>
<a name="volume"></a>
<a name="body volume"></a><h2>Body volume</h2>
<a href="#bodies">Body</a> read-only attribute. 
               Actual volume of a body.  This is the sum of three
parts, in the soapfilm model:
<ul>
<li> An integral over the facets bounding the body. This is 
\int z dx dy normally, but \int (x dy dz + y dz dx + z dx dy)/3
if SYMMETRIC_CONTENT is in effect.
<li> Any constraint content edge integrals applying to the body.
<li> The body's volconst attribute.
</ul>
In the string model, the parts are
<ul>
<li> An integral over the edges bounding the body's facet. This is 
\int -y dx.
<li> Any constraint content vertex integrals applying to the body.
<li> The body's volconst attribute.
</ul>
Body volumes can be displayed with the <a href="single.htm#v">v</a>
command, or with standard attribute syntax. Example:
<pre>  print body[1].volume
  foreach body where volume > 2 do print id
</pre>
<hr>
<a name="target"></a>
<a name="target volume"></a><h2>Body target</h2>
<a href="#bodies">Body</a> read-write attribute. 
           The target volume of a volume constraint.  May be set in 
the 
<a href="datafile.htm#bodies section">datafile</a>,
 by the <a href="single.htm#b">b</a> command, or the 
<a href="commands.htm#set">set</a> command.
A volume constraint may be removed by the 
<a href="commands.htm#unset">unset</a>, or with the 
<a href="single.htm#b">b</a> command.
Command examples:
<pre>   set body[1] target 23
  unset body target where id == 2
  print body[2].target
</pre>
<hr>
<a name="volfixed"></a><h2>Volfixed</h2>
<a href="#bodies">Body</a> read-only attribute. 
Value is 1 if the volume of the body is fixed, 0 if not.
<hr>
<a name="volconst"></a>
<a name="body volconst"></a><h2>Body volconst</h2>
<a href="#bodies">Body</a> read-write attribute. 
     A constant added to the calculated volume. Useful for 
correcting for omitted parts of body boundaries.  Also used 
internally as a correction in the <a href="model.htm#torus model">torus model
</a>, which will use the target volume to calculate volconst internally.  
In the torus model, the target volume should be set within 1/12 of a
torus volume of the actual volume for each body, so the correct volconst
can be computed.  Each volconst will be adjusted proportionately when
the volume of a fundamental torus domain is change by changing the
period formulas.
Volconst can be set
 in the datafile <a href="datafile.htm#bodies section">bodies section</a>,
or interactively by the <a href="commands.htm#set">set</a> command or
by assignment.  Examples:
<pre>  print body[1].volconst
  set body[2] volconst 1.2
  body[2].volconst := 1.2
</pre>
It is best to avoid using volconst except in the torus model.  Rather,
use <a href="datafile.htm#constraint decl">edge content integrals</a>
so that the proper adjustments will be made if the boundary
of the surface is moved, or <a href="commands.htm#rebody">rebody</a>
is done.
<hr>
<a name="actual_volume"></a><h2>Actual_volume</h2>
<a href="#bodies">Body</a> datafile attribute. 
 Actual_volume is a number that can be specified in the
 datafile definition of a body
 in the rare circumstances where the torus volume
  volconst calculation gives the wrong answer; volconst
  will be adjusted to give this volume of the body.
<hr>
<a name="body pressure"></a><h2>Body pressure</h2>
<a href="#bodies">Body</a> read-write attribute. 
        If a body has a prescribed volume, this is a read-only attribute,
which is the Lagrange multiplier for the volume constraint.
If a body is given a prescribed pressure, then there is an energy
term equal to pressure times volume.  A body cannot have a prescribed
volume and a prescribed pressure at the same time.  Prescribed 
volume or pressure
can be set in the <a href="datafile.htm#bodies section">bodies section</a>
of the datafile.  If pressure is prescribed, then the value can be
changed interactively with the <a href="single.htm#b">b</a> command,
the  <a href="commands.htm#set">set</a> command, or by assignment.
Examples:
<pre>  print body[2].pressure
  body[2].pressure := 1.3
  set body[2] pressure 1.3
</pre>
<hr>
<a name="body phase"></a><h2>Body phase</h2>
<a href="#bodies">Body</a> read-write attribute. 
            For determining facet tension in soapfilm model, if a
<a href="datafile.htm#phase decl">phase file</a>
is used.
<hr>
<a href="evolver.htm#doc top">Back to top of Surface Evolver documentation.</a>
<a href="index.htm">Index.</a>
</body>
</html>
 
     |