1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// multiplicate.cmd
// Surface Evolver script to create datafile with surface duplicated
// according to view transforms in effect. Writes datafile to stdout.
// Does not create new elements in current surface, since together
// with view transforms, that would result in quadratic explosion.
// WARNING: This loses all element attributes in the output datafile.
// But does preserve "edgetype" attribute
// Programmer: Ken Brakke, brakke@susqu.edu, http://www.susqu.edu/brakke
// usage: multiplicate >>> "newdatafile.fe"
define edge attribute edgetype integer // in case doesn't exist
eps := 1e-4 // tolerance for identifying vertices
// Hash table for finding identified vertices. Generates hash value
// from skew plane.
mskew1 := 0.361234123413728768
mskew2 := 0.725423451231725277
mskew3 := 0.5227723243451234514
vertex_hash_init := {
vertex_hash_table_size := vertex_count*transform_count;
define vertex_hash_table integer[vertex_hash_table_size];
define vertex_hash_chain integer[vertex_hash_table_size];
define newcoord real[vertex_hash_table_size][3];
vertex_entry_count := 0;
}
// deallocate memory
vertex_hash_end := {
define vertex_hash_table integer[0];
define vertex_hash_chain integer[0];
define newcoord real[0][0];
}
// Returns sequential number of found or new vertex.
function integer vertex_hash_add(real xx, real yy, real zz)
{ local hashval,hashspot;
local vnum,dist;
hashval := floor((mskew1*xx + mskew2*yy + mskew3*zz)/eps);
hashspot := hashval imod vertex_hash_table_size;
// See if there
for ( vnum := vertex_hash_table[hashspot] ; vnum != 0 ;
vnum := vertex_hash_chain[vnum] )
{
dist := sqrt((xx-newcoord[vnum][1])^2 + (yy-newcoord[vnum][2])^2 +
(zz-newcoord[vnum][3])^2);
if dist < eps then return vnum;
};
// Not there, so add
vertex_entry_count += 1;
vnum := vertex_entry_count;
vertex_hash_chain[vnum] := vertex_hash_table[hashspot];
vertex_hash_table[hashspot] := vnum;
newcoord[vnum][1] := xx;
newcoord[vnum][2] := yy;
newcoord[vnum][3] := zz;
return vnum;
}
// Hash table for finding identified edges.
edge_hash_init := {
edge_hash_table_size := edge_count*transform_count;
define edge_hash_table integer[edge_hash_table_size];
define edge_hash_chain integer[edge_hash_table_size];
define new_edge_verts integer[edge_hash_table_size][2];
edge_entry_count := 0;
}
// deallocate memory
edge_hash_end := {
define edge_hash_table integer[0];
define edge_hash_chain integer[0];
define new_edge_verts integer[0][0];
}
// Edge hasher. Returns sequential number (signed) of found or new edge.
function integer edge_hash_add(integer tailv, integer headv)
{ local temp,signflag;
local hashval,hashspot;
local edgenum;
// get vertices in canonical order
if tailv > headv then
{ temp := tailv;
tailv := headv;
headv := temp;
signflag := -1;
}
else signflag := 1;
hashval := tailv*737 + headv;
hashspot := hashval imod edge_hash_table_size;
// See if there
for ( edgenum := edge_hash_table[hashspot] ; edgenum != 0 ;
edgenum := edge_hash_chain[edgenum] )
{
if (tailv == new_edge_verts[edgenum][1]) and
(headv == new_edge_verts[edgenum][2])
then return signflag*edgenum;
};
// Not there, so add
edge_entry_count += 1;
edgenum := edge_entry_count;
edge_hash_chain[edgenum] := edge_hash_table[hashspot];
edge_hash_table[hashspot] := edgenum;
new_edge_verts[edgenum][1] := tailv;
new_edge_verts[edgenum][2] := headv;
return signflag*edgenum;
}
multiplicate := {
local tcount,high_vertex,vx,vy,vz;
local high_edge,thistail,thishead,fstride,tdet,edge1,edge2,edge3;
list topinfo;
define vertex attribute tx real[transform_count];
define vertex attribute ty real[transform_count];
define vertex attribute tz real[transform_count];
define vertex attribute valias integer[transform_count];
define edge attribute ehead integer[transform_count];
define edge attribute etail integer[transform_count];
define edge attribute ealias integer[transform_count];
printf "\nVertices\n";
vertex_hash_init;
tcount := 1;
high_vertex := 0;
while ( tcount <= transform_count ) do
{ foreach vertex vv do
{
vx := view_transforms[tcount][1][1]*vv.x
+ view_transforms[tcount][1][2]*vv.y
+ view_transforms[tcount][1][3]*vv.z
+ view_transforms[tcount][1][4]*1;
vy := view_transforms[tcount][2][1]*vv.x
+ view_transforms[tcount][2][2]*vv.y
+ view_transforms[tcount][2][3]*vv.z
+ view_transforms[tcount][2][4]*1;
vz := view_transforms[tcount][3][1]*vv.x
+ view_transforms[tcount][3][2]*vv.y
+ view_transforms[tcount][3][3]*vv.z
+ view_transforms[tcount][3][4]*1;
vv.tx[tcount] := vx; vv.ty[tcount] := vy; vv.tz[tcount] := vz;
// search for alias
vv.valias[tcount] := vertex_hash_add(vx,vy,vz);
if vv.valias[tcount] > high_vertex then
{ printf "%d %18.15f %18.15f %18.15f ",vv.valias[tcount],
vx,vy,vz;
printf "\n";
high_vertex := vv.valias[tcount];
};
};
tcount += 1;
};
vertex_hash_end;
printf "\nEdges\n";
tcount := 1;
edge_hash_init;
high_edge := 0;
while ( tcount <= transform_count ) do
{ foreach edge ee do
{
thistail := vertex[ee.vertex[1].id].valias[tcount];
thishead := vertex[ee.vertex[2].id].valias[tcount];
ee.ehead[tcount] := thishead;
ee.etail[tcount] := thistail;
// search for aliases
ee.ealias[tcount] := edge_hash_add(thistail,thishead);
if ( abs(ee.ealias[tcount]) > high_edge ) then
{ printf "%d %d %d edgetype %d",abs(ee.ealias[tcount]),
minimum(thistail,thishead),maximum(thistail,thishead),edgetype;
if ee.bare then printf " bare ";
printf "\n";
high_edge := abs(ee.ealias[tcount]);
};
};
tcount += 1;
};
edge_hash_end;
printf "\nFaces\n";
fstride := max(facet,id);
tcount := 1;
while ( tcount <= transform_count ) do
{ tdet := view_transforms[tcount][1][1]*
(view_transforms[tcount][2][2]*view_transforms[tcount][3][3]
- view_transforms[tcount][3][2]*view_transforms[tcount][2][3])
- view_transforms[tcount][1][2]*
(view_transforms[tcount][2][1]*view_transforms[tcount][3][3]
- view_transforms[tcount][3][1]*view_transforms[tcount][2][3])
+ view_transforms[tcount][1][3]*
(view_transforms[tcount][2][1]*view_transforms[tcount][3][2]
- view_transforms[tcount][3][1]*view_transforms[tcount][2][2]);
foreach facet ff do
{ edge1 := edge[ff.edge[1].id].ealias[tcount];
edge2 := edge[ff.edge[2].id].ealias[tcount];
edge3 := edge[ff.edge[3].id].ealias[tcount];
if ( view_transform_swap_colors[tcount] != (tdet < 0.0) ) then
// inverted
printf "%d %d %d %d\n",ff.id + (tcount-1)*fstride,
((ff.edge[3].oid > 0) ? -edge3 : edge3),
((ff.edge[2].oid > 0) ? -edge2 : edge2),
((ff.edge[1].oid > 0) ? -edge1 : edge1)
else
printf "%d %d %d %d\n",ff.id + (tcount-1)*fstride,
((ff.edge[1].oid > 0) ? edge1 : -edge1),
((ff.edge[2].oid > 0) ? edge2 : -edge2),
((ff.edge[3].oid > 0) ? edge3 : -edge3);
};
tcount += 1;
};
// not listing bottominfo on purpose; too much extraneous stuff
// free attribute storage
define vertex attribute tx real[0];
define vertex attribute ty real[0];
define vertex attribute tz real[0];
define vertex attribute valias integer[0];
define edge attribute ehead integer[0];
define edge attribute etail integer[0];
define edge attribute ealias integer[0];
}
aa := 1
pview := {
printf "%f %f %f %f\n",view_transforms[aa][1][1],view_transforms[aa][1][2],
view_transforms[aa][1][3],view_transforms[aa][1][4];
printf "%f %f %f %f\n",view_transforms[aa][2][1],view_transforms[aa][2][2],
view_transforms[aa][2][3],view_transforms[aa][2][4];
printf "%f %f %f %f\n",view_transforms[aa][3][1],view_transforms[aa][3][2],
view_transforms[aa][3][3],view_transforms[aa][3][4];
printf "%f %f %f %f\n",view_transforms[aa][4][1],view_transforms[aa][4][2],
view_transforms[aa][4][3],view_transforms[aa][4][4];
}
// Paste things together that didn't get pasted, by finding edges that
// come out of vertices in the same direction.
paste := {
local paste_count;
paste_count := 0; // track how many found, so know when no more left
foreach vertex vv do
{ foreach vv.edge ee do
{
foreach vv.edge eee do
{ if ee.id == eee.id then continue;
if (ee.x-eee.x)^2 + (ee.y-eee.y)^2 + (ee.z-eee.z)^2 < eps^2 then
{ edge_merge(ee.oid,eee.oid);
paste_count += 1;
break;
}
}
}
};
printf "Edges pasted: %d\n",paste_count;
}
// usage: Set view transforms as desired, then do
// multiplicate >>> "newdatafile.fe"
|