1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/*************************************************************
* This file is part of the Surface Evolver source code. *
* Programmer: Ken Brakke, brakke@susqu.edu *
*************************************************************/
/****************************************************************
*
* File: wulff.c
*
* Purpose: Routines dealing with surface energy as function
* of normal direction.
*/
/*****************************************************************
*
* Discussion: For a chunk of surface represented by its
* normal vector N (length is area of chunk), its energy is
* the inner product of N with the Wulff vector W, which is a
* function of N. For a given set of Wulff vectors, W is the
* one whose inner product with N is greatest. The Wulff vectors
* are the vertices of the Wulff crystal. For simple area,
* W is the normalization of N.
*
* Force is energy gradient, so for N depending on a parameter u,
*
* dE/du = <dN/du,W> + <N,dW/du>
*
* However, the fact that W has maximal product with N implies
* <N,dW/du> = 0, so dE/du = <dN/du,W>. So we need only
* the Wulff vector to calculate both energy and force.
*/
#include "include.h"
/*******************************************************
*
* wulff_initialize()
*
* Purpose: Read in Wulff vectors from file and initialze
* Wulff variables. If special name, redirects
* Wulff functions to special functions in this
* file.
*
* Input: Name of file with Wulff vectors.
*
* Output: Array of Wulff vectors, wulff_flag set
*/
void wulff_initialize(wulffname)
char *wulffname;
{
FILE *wfd;
REAL *row; /* current Wulff vector */
int k; /* vector number */
int j; /* dimension number */
if ( (web.representation != SOAPFILM ) || (SDIM != 3) )
kb_error(1385,"Can only do Wulff energy for 2D surface in 3D.\n",RECOVERABLE);
if ( !wulffname || (wulffname[0] == 0) )
kb_error(2857,"Missing Wulff file name.\n",RECOVERABLE);
web.wulff_flag = 1;
/* save name */
strncpy(web.wulff_name,wulffname,sizeof(web.wulff_name));
/* test special names */
if ( (strncmp(wulffname,"hemisphere",10) == 0 )
|| (strcmp(wulffname,"hemi") == 0) )
{ get_wulff = hemi_wulff;
return;
}
else if ( strncmp(wulffname,"lens",4) == 0 )
{ get_wulff = lens_wulff;
return;
}
/* default is from file */
get_wulff = file_wulff;
wfd = path_open(wulffname,NOTDATAFILENAME);
if ( wfd == NULL )
{ sprintf(errmsg,"Cannot open Wulff vector file %s.\n",wulffname);
kb_error(1386,errmsg,DATAFILE_ERROR);
return;
}
for ( k = 0 ; k < MAXWULFF ; k++ )
{ row = wulff_vector[k];
for ( j = 0 ; j < SDIM ; j++ )
#ifdef LONGDOUBLE
if ( fscanf(wfd,"%Lf",row+j) != 1 ) break;
#else
if ( fscanf(wfd,"%lf",row+j) != 1 ) break;
#endif
}
fclose(wfd);
web.wulff_count = k;
}
/******************************************************************8
*
* Function: file_wulff()
*
* Purpose: Finds Wulff vector that has maximum dot product
* with given vector.
*
* Input: Pointer to given vector,
* pointer to destination of Wulff vector.
*
* Output: Components of Wulff vector put in place.
*/
void file_wulff(norm,wulff)
REAL *norm;
REAL *wulff;
{
REAL maxw = -1e20;
REAL *w; /* Wulff vector being tested */
int k;
int best = 0;
for ( k = 0 ; k < web.wulff_count ; k++ )
{ w = wulff_vector[k];
if ( SDIM_dot(w,norm) > maxw )
{ best = k;
maxw = SDIM_dot(w,norm);
}
}
memcpy((char *)wulff,(char *)wulff_vector[best],SDIM*sizeof(REAL));
}
/******************************************************************
*
* Function: hemi_wulff()
*
* Purpose: Provide Wulff vector for upper hemisphere Wulff shape.
*/
void hemi_wulff(normal,wulff)
REAL *normal;
REAL *wulff;
{
int i;
REAL norm;
wulff[0] = normal[0];
wulff[1] = normal[1];
if ( normal[2] < 0.0 )
wulff[2] = 0.0;
else wulff[2] = normal[2];
norm = sqrt(SDIM_dot(wulff,wulff));
if ( norm > 0.0 )
for ( i = 0 ; i < SDIM ; i++ )
wulff[i] /= norm;
}
/********************************************************************
*
* Function: lens_wulff
*
* Purpose: Provide Wulff vector for lens-shaped Wulff shape.
*/
void lens_wulff(normal,wulff)
REAL *normal;
REAL *wulff;
{
REAL norm;
/* test whether interior or edge Wulff vector */
norm = dot(normal,normal,2); /* x and y only */
if ( norm < 3*normal[2]*normal[2] )
{ /* interior */
norm = sqrt(norm + normal[2]*normal[2]);
if ( norm > 0.0 )
{ wulff[0] = normal[0]/norm;
wulff[1] = normal[1]/norm;
wulff[2] = normal[2]/norm - 0.5;
}
}
else
{ /* edge */
norm = sqrt(norm/0.75);
wulff[0] = normal[0]/norm;
wulff[1] = normal[1]/norm;
wulff[2] = 0.0;
}
}
/************************************************************************
Wulff energy as method
**************************************************************************/
void wulff_method_init(mode,mi)
int mode;
struct method_instance *mi;
{ char response[200];
if ( web.modeltype != LINEAR )
kb_error(2859,"Wulff energy can only be done in LINEAR model.\n",
RECOVERABLE);
if ( web.wulff_flag == 0 )
{ prompt("Enter Wulff name (hemi,lens, or filename): ",response,sizeof(response));
wulff_initialize(response);
}
}
REAL facet_wulff_value(f_info)
struct qinfo *f_info;
{ REAL normal[MAXCOORD];
REAL wulff [MAXCOORD];
REAL density = get_facet_density(f_info->id);
REAL energy;
REAL side [MAXCOORD][MAXCOORD];
int i,j;
for ( i = 0 ; i < FACET_EDGES ; i++ )
{ int ii = (i+1)%FACET_EDGES;
for ( j = 0 ; j < SDIM ; j++ )
side[i][j] = f_info->x[ii][j] - f_info->x[i][j];
}
/* calculate normal */
cross_prod(side[0],side[1],normal);
(*get_wulff)(normal,wulff);
energy = SDIM_dot(wulff,normal)/2;
return density*energy;
}
REAL facet_wulff_grad(f_info)
struct qinfo *f_info;
{ REAL normal[MAXCOORD];
REAL wulff [MAXCOORD];
REAL temp [MAXCOORD];
REAL side [MAXCOORD][MAXCOORD];
REAL density = get_facet_density(f_info->id);
REAL energy;
int i,j;
for ( i = 0 ; i < FACET_EDGES ; i++ )
{ int ii = (i+1)%FACET_EDGES;
for ( j = 0 ; j < SDIM ; j++ )
side[i][j] = f_info->x[ii][j] - f_info->x[i][j];
}
/* calculate normal */
cross_prod(side[0],side[1],normal);
(*get_wulff)(normal,wulff);
/* force on each vertex */
for ( i = 0 ; i < FACET_VERTS ; i++ ) /* vertex loop */
{ int k;
j = (i+1)%FACET_EDGES; /* opposite side */
cross_prod(side[j],wulff,temp);
for ( k = 0 ; k < SDIM ; k++ )
f_info->grad[i][k] -= density*temp[k]/2;
}
energy = SDIM_dot(wulff,normal)/2;
return density*energy;
}
|