1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
// adjoint.cmd
/* Surface Evolver script for the calculation of the adjoint minimal surface
using Konrad Polthier's discrete conjugate method of Bonnet rotation. See
Ulrich Pinkall and Konrad Polthier, Computing Discrete Minimal Surfacee
and Their Conjugates, Experim. Math. 2(1) (1993) 15-36
http://page.mi.fu-berlin.de/polthier/articles/diri/diri_jem.pdf
and
Konrad Polthier, Conjugate Harmonic Maps and Minimal Surfaces.
http://page.mi.fu-berlin.de/polthier/articles/harmonic/Harmonic_preprint.pdf
The "adjoint" of a smooth minimal surface is another minimal surface
isometric to the first that has normals in the same direction at each
point but the infinitesimal surface element rotated 90 degrees about
the normal. Schwartz' P and D surfaces are adjoints of each other.
A "discrete minimal surface" is made up of flat triangles. It is called
"conforming" if the vertices of adjacent triangles coincide, and
"nonconforming" if adjacent triangles only meet at their midpoints.
Polthier shows that if a conforming discrete minimal surface minimizes
area, then it has an exact nonconforming adjoint.
The "adjoint" command in this file takes a conforming surface and
calculates the nonconforming adjoint, then tweaks vertices to make it
conforming, so it is a legal Surface Evolver surface.
Assumptions: 3D soapfilm model, linear model, no torus or symmetry group.
Each edge has only one or two adjacent facets.
Facets have consistent orientation.
The original surface should be free of all level set constraints and
boundaries before doing "adjoint"; "fixed" vertices and edges are ok.
Usage: adjoint
Before running "adjoint", you can set the variable "starte" to the number
of the edge whose midpoint will remain fixed in place; default is edge[1].
After "adjoint" has been run, you can flip back and forth between the
original and the adjoint with the "flip" command.
Usage: flip
The angle of the Bonnet rotation is set by the variable "bangle", which
you may set to any degree value before doing "adjoint". The default
value of bangle is 90 degrees.
Also this file has the command "write_conjugate" to write a datafile to
stdout that is the nonconforming discrete adjoint, with separated vertices.
Use this to see Polthier's idea in its true form.
Usage: write_conjugate >>> "filename.fe"
For a slightly more elaborate approach using complex numbers for the
adjoint coordinates, which is faster for doing multiple arbitrary
rotations, see adjointc.cmd. This file and adjointc.cmd have
non-overlapping namespaces, so both can be loaded simultaneously.
Programmer: Ken Brakke, brakke@susqu.edu, www.susqu.edu/brakke
*/
// For converting to adjoint
define vertex attribute ad_newx real [3];
define edge attribute ad_eflag integer;
define edge attribute ad_enewx real [3];
// Angle of Bonnet rotation, degrees
bangle := 90
// Swaps conjugate sets of coordinates.
flip := {
local tmp;
foreach vertex vv do
{ tmp := vv.x; vv.x := vv.ad_newx[1]; vv.ad_newx[1] := tmp;
tmp := vv.y; vv.y := vv.ad_newx[2]; vv.ad_newx[2] := tmp;
tmp := vv.z; vv.z := vv.ad_newx[3]; vv.ad_newx[3] := tmp;
}
}
// Conjugation from conforming to nonconforming. This should be done
// after removing all constraints and boundaries from vertices.
starte := 0 // user should set starte to set vertex that doesn't move.
conconj := {
local bs,bc,ecount,endflag,loopcount,enum,thise,nexte,othere;
local nx,ny,nz,norm,vva,vvb,vvc,kk,nbrs;
// check valence
foreach edge ee where valence > 2 do
{ errprintf "ERROR: adjointc: Some edges have more than two facets.\n";
abort;
};
// check all facets same orientation
foreach edge ee where valence == 2 and
ee.facet[1].oid*ee.facet[2].oid > 0 do
{ errprintf "ERROR: adjointc: Facets have inconsistent orientations.\n";
abort;
};
set edge ad_eflag 0;
if not valid_element(edge[starte]) then
foreach vertex ee do { starte := ee.id; break; }; // just to get starter
edge[starte].ad_enewx[1] := avg(edge[starte].vertex,x);
edge[starte].ad_enewx[2] := avg(edge[starte].vertex,y);
edge[starte].ad_enewx[3] := avg(edge[starte].vertex,z);
edge[starte].ad_eflag := 1;
bs := sin(bangle*pi/180);
bc := cos(bangle*pi/180);
ecount := 1;
endflag := 0;
loopcount := 1;
while ( !endflag ) do
{ endflag := 1;
foreach facet ff do
{ enum := 1;
while ( enum <= 5 ) do
{ thise := (enum imod 3) + 1;
nexte := ((enum+1) imod 3) + 1;
othere := ((enum+2) imod 3) + 1;
if ( ff.edge[thise].ad_eflag>=loopcount and !ff.edge[nexte].ad_eflag ) then
{ nx := ff.x;
ny := ff.y;
nz := ff.z;
norm := sqrt(nx^2+ny^2+nz^2);
nx := nx/norm; ny := ny/norm; nz := nz/norm;
ff.edge[nexte].ad_enewx[1] :=
ff.edge[thise].ad_enewx[1] - (bc*ff.edge[othere].x
+ bs*(ff.edge[othere].y*nz - ff.edge[othere].z*ny))/2;
ff.edge[nexte].ad_enewx[2] :=
ff.edge[thise].ad_enewx[2] - (bc*ff.edge[othere].y
+ bs*(ff.edge[othere].z*nx - ff.edge[othere].x*nz))/2;
ff.edge[nexte].ad_enewx[3] :=
ff.edge[thise].ad_enewx[3] - (bc*ff.edge[othere].z
+ bs*(ff.edge[othere].x*ny - ff.edge[othere].y*nx))/2;
ff.edge[nexte].ad_eflag := loopcount+1;
endflag := 0;
ecount += 1;
};
enum += 1;
}; // end while
};
if !quiet then printf "%g edges done.\n",ecount;
loopcount += 1;
};
set vertex ad_newx[1] 0;
set vertex ad_newx[2] 0;
set vertex ad_newx[3] 0;
foreach facet ff do
{ // extend center facet to original vertex; can't simply average
// midedge vertices around an original vertex since that doesn't
// work for vertices on the boundary.
vva := 1; while ( vva <= 3 ) do
{ vvb := vva==3 ? 1 : vva+1;
vvc := vva==1 ? 3 : vva-1;
kk := 1; while ( kk <= 3 ) do
{
ff.vertex[vva].ad_newx[kk] += ff.edge[vva].ad_enewx[kk]
- ff.edge[vvb].ad_enewx[kk] + ff.edge[vvc].ad_enewx[kk];
kk += 1;
};
vva += 1;
}
};
foreach vertex vv do
{
nbrs := sum(vv.facet, 1);
if ( nbrs != 0 ) then
{ vv.ad_newx[1] /= nbrs;
vv.ad_newx[2] /= nbrs;
vv.ad_newx[3] /= nbrs;
};
};
} // end conconj
// Write split-vertex adjoint datafile. To be done after conconj;
// uses ad_enewx values to compute vertices.
write_conjugate := {
printf "// split-vertex discrete adjoint of %s, rotation angle %f.\n",
datafilename,bangle;
printf "\nvertices\n";
foreach facet ff do
{ printf "%d %15.10f %15.10f %15.10f\n",3*ff.id-2,
ff.edge[1].ad_enewx[1]+ff.edge[2].ad_enewx[1]-ff.edge[3].ad_enewx[1],
ff.edge[1].ad_enewx[2]+ff.edge[2].ad_enewx[2]-ff.edge[3].ad_enewx[2],
ff.edge[1].ad_enewx[3]+ff.edge[2].ad_enewx[3]-ff.edge[3].ad_enewx[3];
printf "%d %15.10f %15.10f %15.10f\n",3*ff.id-1,
-ff.edge[1].ad_enewx[1]+ff.edge[2].ad_enewx[1]+ff.edge[3].ad_enewx[1],
-ff.edge[1].ad_enewx[2]+ff.edge[2].ad_enewx[2]+ff.edge[3].ad_enewx[2],
-ff.edge[1].ad_enewx[3]+ff.edge[2].ad_enewx[3]+ff.edge[3].ad_enewx[3];
printf "%d %15.10f %15.10f %15.10f\n",3*ff.id,
ff.edge[1].ad_enewx[1]-ff.edge[2].ad_enewx[1]+ff.edge[3].ad_enewx[1],
ff.edge[1].ad_enewx[2]-ff.edge[2].ad_enewx[2]+ff.edge[3].ad_enewx[2],
ff.edge[1].ad_enewx[3]-ff.edge[2].ad_enewx[3]+ff.edge[3].ad_enewx[3];
};
printf "\nedges\n";
foreach facet ff do
{ printf "%d %d %d\n",3*ff.id-2,3*ff.id-2,3*ff.id-1;
printf "%d %d %d\n",3*ff.id-1,3*ff.id-1,3*ff.id;
printf "%d %d %d\n",3*ff.id,3*ff.id,3*ff.id-2;
};
printf "\nfaces\n";
foreach facet ff do
printf "%d %d %d %d\n",ff.id,3*ff.id-2,3*ff.id-1,3*ff.id;
} // end write_conjugate
adjoint := {
local autodisplay_state;
// Check assumption
if torus then
{ errprintf "Cannot run 'adjoint' command in torus mode.\n";
abort;
};
if symmetry_group then
{ errprintf "Cannot run 'adjoint' command in symmetry group mode.\n";
abort;
};
if space_dimension != 3 then
{ errprintf "The 'adjoint' command must be run in three-dimensional space.\n";
abort;
};
if surface_dimension == 1 then
{ errprintf "The 'adjoint' command is not meant for the string model.\n";
abort;
};
if simplex_representation then
{ errprintf "The 'adjoint' command is not meant for the simplex model.\n";
abort;
};
if lagrange_order >= 2 then
{ errprintf "The 'adjoint' command is meant for the linear model, not quadratic or Lagrange.\n";
abort;
};
if min(edge,valence) < 1 or max(edge,valence) > 2 then
{ errprintf "The 'adjoint' command requires all edges to have one or two adjacent facets.\n";
abort;
};
// Now to business.
autodisplay_state := (autodisplay);
autodisplay off;
conconj;
flip;
if ( autodisplay_state ) then autodisplay;
}
// End adjoint.cmd
// Usage: adjoint
|