1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
// povrays.cmd
// Surface Evolver command for producing POV-Ray input file.
// Output is to stdout, so redirect to desired file.
// Programmer: Ken Brakke, brakke@susqu.edu, http://www.susqu.edu/brakke
// Like povray.cmd, but with vertex normals for a smooth surface.
// A normal at a vertex of a facet is the average of all adjacent
// facet normals within a certain angle of the original facet normal
// Usage:
// Use the "show edge where ..." command to declare which
// edges are to be depicted as thin cylinders.
// Set "edge_radius" to desired radius of edge cylinders.
// Set "critcos" to critical cosine of angle for facets
// regarded as smoothly joined.
// Run "povrays" with output redirected to a file, e.g.
// Enter command: povrays >>> "something.pov"
edge_radius := 0.003; // adjust this for desired radius of edge cylinders
critcos := 0.8; // criterion for vertex normal averaging.
procedure print_color(integer ev_color) {
if ( ev_color == white ) then printf " t_white "
else if ( ev_color == black ) then printf " t_black "
else if ( ev_color == blue) then printf " t_blue "
else if ( ev_color == green ) then printf " t_green "
else if ( ev_color == cyan ) then printf " t_cyan "
else if ( ev_color == red ) then printf " t_red "
else if ( ev_color == magenta ) then printf " t_magenta "
else if ( ev_color == brown ) then printf " t_brown "
else if ( ev_color == lightgray ) then printf " t_lightgray "
else if ( ev_color == darkgray ) then printf " t_darkgray "
else if ( ev_color == lightblue ) then printf " t_lightblue "
else if ( ev_color == lightgreen ) then printf " t_lightgreen "
else if ( ev_color == lightcyan ) then printf " t_lightcyan "
else if ( ev_color == lightred ) then printf " t_lightred "
else if ( ev_color == lightmagenta ) then printf " t_lightmagenta "
else if ( ev_color == yellow ) then printf " t_yellow ";
}
povrays := {
local ffx,ffy,ffz,ffnorm,vernum,nx,ny,nz,fffx,fffy,fffz,fffnorm;
local costheta,nnorm;
// Check assumptions
if torus then
{ errprintf "Cannot run 'povrays' command in torus mode. Do 'detorus' first.\n";
abort;
};
if symmetry_group then
{ errprintf "Cannot run 'povrays' command in symmetry group mode. Do 'detorus' first.\n";
abort;
};
if space_dimension != 3 then
{ errprintf "The 'povrays' command must be run in three-dimensional space.\n";
abort;
};
if surface_dimension == 1 then
{ errprintf "The 'povrays' command is not meant for the string model.\n";
abort;
};
if simplex_representation then
{ errprintf "The 'povrays' command is not meant for the simplex model.\n";
abort;
};
if lagrange_order >= 2 then
{ errprintf "The 'povrays' command is meant for the linear model, not quadratic or Lagrange.\n";
abort;
};
if rgb_colors then
{ errprintf "The 'povrays' command does not do RGB colors; do rgb_colors off.\n";
abort;
};
printf "// %s in POV-Ray format.\n\n",datafilename;
printf "light_source { <0,0,300> color rgb <1,1,1> }\n";
printf "light_source { <100,0,0> color rgb <1,1,1> }\n";
printf "camera { location <12,0,0> sky <0,0,1> // right handed \n";
printf " up <0,0,1> right <1.3,0,0> look_at <0,0,0> angle 15 }\n";
printf "background { color <0.3,0.8,1.0> } // light blue\n\n";
printf "// Textures corresponding to Evolver colors\n\n";
printf "#declare t_black = texture { pigment { rgb <0.0,0.0,0.0> }}\n";
printf "#declare t_blue = texture { pigment { rgb <0.0,0.0,1.,> }}\n";
printf "#declare t_green = texture { pigment { rgb <0.0,1.,0.0,> }}\n";
printf "#declare t_cyan = texture { pigment { rgb <0.0,1.,1.,> }}\n";
printf "#declare t_red = texture { pigment { rgb <1.,0.0,0.0,> }}\n";
printf "#declare t_magenta = texture { pigment { rgb <1.,0.0,1.,> }}\n";
printf "#declare t_brown = texture { pigment { rgb <1.,0.5,0.,> }}\n";
printf "#declare t_lightgray = texture { pigment { rgb <.6,.6,.6,> }}\n";
printf "#declare t_darkgray = texture { pigment { rgb <.3,.3,.3,> }}\n";
printf "#declare t_lightblue = texture { pigment { rgb <.3,.8,1.,> }}\n";
printf "#declare t_lightgreen = texture { pigment { rgb <.5,1.,.5,> }}\n";
printf "#declare t_lightcyan = texture { pigment { rgb <.5,1.,1.,> }}\n";
printf "#declare t_lightred = texture { pigment { rgb <1.,.5,.5,> }}\n";
printf "#declare t_lightmagenta = texture { pigment { rgb <1.,.5,1.,> }}\n";
printf "#declare t_yellow = texture { pigment { rgb <1.,1.,.0,> }}\n";
printf "#declare t_white = texture { pigment { rgb <1.,1.,1.,> }}\n";
printf "\n//One overall object.\n";
printf "union {\n";
printf "// All facets in one big mesh object for efficiency.\n";
printf " mesh { \n";
foreach facet ff where show and color >= 0 do {
printf " smooth_triangle { ";
ffx := ff.x; ffy := ff.y; ffz := ff.z;
ffnorm := sqrt(ffx^2 + ffy^2 + ffz^2);
vernum := 1;
while ( vernum <= 3 ) do
{ nx := 0; ny := 0; nz := 0;
foreach ff.vertex[vernum].facet fff do
{ fffx := fff.x; fffy := fff.y; fffz := fff.z;
fffnorm := sqrt(fffx^2 + fffy^2 + fffz^2);
costheta := (fffx*ffx+fffy*ffy+fffz*ffz)/ffnorm/fffnorm;
if ( costheta > critcos ) then
{ nx := nx + fffx/fffnorm;
ny := ny + fffy/fffnorm;
nz := nz + fffz/fffnorm;
}
else if ( costheta < -critcos ) then // in case nonorientable
{ nx := nx - fffx/fffnorm;
ny := ny - fffy/fffnorm;
nz := nz - fffz/fffnorm;
}
};
nnorm := sqrt(nx^2+ny^2+nz^2);
if vernum > 1 then printf ",";
printf "<%f,%f,%f>,<%f,%f,%f>",
ff.vertex[vernum].x,ff.vertex[vernum].y,ff.vertex[vernum].z,
nx/nnorm,ny/nnorm,nz/nnorm;
vernum := vernum + 1;
};
printf " texture {";
if view_matrix[1][1]*ffx + view_matrix[1][2]*ffy + view_matrix[1][3]*ffz > 0
then
print_color(ff.frontcolor)
else
print_color(ff.backcolor);
printf " } }\n";
};
printf " } // end of mesh object\n";
// Do desired edges
printf "#declare edge_radius = %f;\n",edge_radius;
foreach edge ee where ee.show do
{ printf "cylinder { <%f,%f,%f>,<%f,%f,%f> edge_radius texture {",
ee.vertex[1].x,ee.vertex[1].y,ee.vertex[1].z,
ee.vertex[2].x,ee.vertex[2].y,ee.vertex[2].z;
print_color(ee.color);
printf "} }\n";
};
// Windup
printf "// overall viewing transformation\n";
printf " matrix < %f,%f,%f,\n",
view_matrix[1][1],view_matrix[2][1],view_matrix[3][1];
printf " %f,%f,%f,\n",
view_matrix[1][2],view_matrix[2][2],view_matrix[3][2];
printf " %f,%f,%f,\n",
view_matrix[1][3],view_matrix[2][3],view_matrix[3][3];
printf " %f,%f,%f>\n",
view_matrix[1][4],view_matrix[2][4],view_matrix[3][4];
printf " } // end of all objects\n";
}
// End povrays.cmd
// Usage:
// Use the "show edge where ..." command to declare which
// edges are to be depicted as thin cylinders.
// Set "edge_radius" to desired radius of edge cylinders.
// Set "critcos" to critical cosine of angle for facets
// regarded as smoothly joined.
// Run "povray" and redirect to desired file, e.g.
// Enter command: povray >>> "something.pov"
// Run "povrays" with output redirected to a file, e.g.
// Enter command: povrays >>> "something.pov"
|