1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
// edge_tuber.fe
// Tubing edges. Idea is to get the edge network you want by refining
// facets, deleting facets, deleting edges, then tubing what is left.
// Does nice junctions at vertices, and caps at valence 1 vertices.
// Same radius on all tubes.
/* Usage:
Set edge_tuber_sides to desired value of sides around edge, default 6.
Set edge_tuber_cap_zones to number of latitudinal zones wanted on edge caps,
default 2.
Do one of the following:
a. To simply tube a given set of edges:
set edge tuber_status tuber_edge_to_do where ...
edge_tuber(radius)
b. To dissolve all facets and tube all edges:
edge_tuber_naked(radius)
c. To create dual edges and tube them:
edge_tuber_dual(radius)
Limitations: Only works with 3D soapfilm linear model, no torus or symmetry mode.
*/
edge_tuber_sides := 6;
edge_tuber_cap_zones := 2;
edge_tuber_maxv := edge_tuber_sides+15
// Vertices created at each vertex for each edge, stored per edge end
define edge attribute ehub integer[2][edge_tuber_maxv]; // vertex id's of hub vertices
define edge attribute ehub_count integer[2]; // how many hub vertices
define edge attribute tuber_status integer; // edges to be tubed
tuber_edge_to_do := 1
tuber_edge_done := 2
/* for debugging */
define facet attribute tuber_orig_edge integer // edge the facet came from
// For adjusting tube radius after construction
define vertex attribute tuber_spot real[3] // zero radius spot
define vertex attribute tuber_vec real[3] // radius parametric vector
/**********************************************************************************************/
// Cap at end of edge at valence 1 vertex.
procedure edge_tuber_cap(integer v_id, real radius)
{ local sides,evec,tipv,lintelv,vx,ribe,roofe,lintele,diage,perp1,perp2;
local inx,jnx,cangle,cc,ss,iangle,iinx,f_id;
sides := edge_tuber_sides;
define vx real[3];
define evec real[3];
define perp1 real[3];
define perp2 real[3];
define lintelv integer[edge_tuber_cap_zones+1][sides];
define ribe integer[edge_tuber_cap_zones][sides];
define lintele integer[edge_tuber_cap_zones][sides];
define diage integer[edge_tuber_cap_zones][sides];
foreach vertex[v_id].edge ee where tuber_status == tuber_edge_to_do do
{
evec := ee.edge_vector;
evec /= -sqrt(evec*evec);
// get orthogonal basis
if abs(evec[1]) > 0.5 then // cross with (0,1,0)
perp1 := { evec[3],0,-evec[1]}
else
perp1 := { 0, -evec[3], evec[2]};
perp1 /= sqrt(perp1*perp1);
perp2 := { evec[2]*perp1[3]-evec[3]*perp1[2],
evec[3]*perp1[1]-evec[1]*perp1[3],
evec[1]*perp1[2]-evec[2]*perp1[1]};
perp2 /= sqrt(perp2*perp2);
// Create vertices
// Tip vertex
vx := vertex[v_id].__x + radius*evec;
tipv := new_vertex(vx[1],vx[2],vx[3]);
vertex[tipv].tuber_spot := vertex[v_id].__x;
vertex[tipv].tuber_vec := evec;
lintelv[edge_tuber_cap_zones+1] := tipv; // handy to have
// Rings of vertices
for ( inx := 1 ; inx <= sides ; inx++ )
{ iangle := 2*pi*inx/edge_tuber_sides;
for ( jnx := 0 ; jnx < edge_tuber_cap_zones ; jnx++ )
{ cangle := pi/2*jnx/edge_tuber_cap_zones;
ss := sin(cangle);
cc := cos(cangle);
vx := vertex[v_id].__x + radius*(ss*evec + cc*cos(iangle)*perp1 + cc*sin(iangle)*perp2);
lintelv[jnx+1][inx] := new_vertex(vx[1],vx[2],vx[3]);
vertex[lintelv[jnx+1][inx]].tuber_spot := vertex[v_id].__x;
vertex[lintelv[jnx+1][inx]].tuber_vec := ss*evec + cc*cos(iangle)*perp1 + cc*sin(iangle)*perp2;
}
};
// Set hub vertices
if ee.oid > 0 then
{ ee.ehub[1] := lintelv[1];
ee.ehub_count[1] := sides;
}
else
{ for ( inx := 1 ; inx <= sides ; inx++ )
ee.ehub[2][sides-inx+1] := lintelv[1][inx];
ee.ehub_count[2] := sides;
};
// Create edges
for ( inx := 1 ; inx <= sides ; inx++ )
{ iinx := inx == sides ? 1 : inx+1;
for ( jnx := 1 ; jnx <= edge_tuber_cap_zones ; jnx++ )
{
ribe[jnx][inx] := new_edge(lintelv[jnx][inx],lintelv[jnx+1][inx]);
if jnx < edge_tuber_cap_zones then
diage[jnx][inx] := new_edge(lintelv[jnx][inx],lintelv[jnx+1][iinx]);
lintele[jnx][inx] := new_edge(lintelv[jnx][inx],lintelv[jnx][iinx]);
}
};
// Create facets
for ( inx := 1 ; inx <= sides ; inx++ )
{ iinx := inx == sides ? 1 : inx+1;
for ( jnx := 1 ; jnx < edge_tuber_cap_zones ; jnx++ )
{ f_id := new_facet(lintele[jnx][inx],ribe[jnx][iinx],-diage[jnx][inx]);
set facet[f_id] tuber_orig_edge ee.id;
f_id := new_facet(diage[jnx][inx],-lintele[jnx+1][inx],-ribe[jnx][inx]);
set facet[f_id] tuber_orig_edge ee.id;
};
f_id := new_facet(lintele[jnx][inx],ribe[jnx][iinx],-ribe[jnx][inx]);
set facet[f_id] tuber_orig_edge ee.id;
};
} // end ee
} // end edge_tuber_cap
/**********************************************************************************************/
define vertex attribute voffset real[3] // due to single edges
// Creating hubs at given vertex for each adjacent edge
// by finding convex set of separating planes.
// Developed from outer_vertex_tube() of dualtuber.cmd.
procedure calc_vertex_hubs(integer v_id, real radius)
{
local plane_normals, evecs, e_oids,inx,jnx,knx,single_count,outvec;
local mnx,ecount,pnx,hidden,found,unx,loopsize,rnx,znx,loopspot,snx;
local changes,sides,mminx,jeps,mray,bestj,bestdot,swangle,bestm,minx;
local fudge, starter, maxdot, thisdot,cc,ss,mangle;
define evecs real[20][3]; // unit edge vectors
define plane_normals real[20][20][3]; // separating plane unit normals
define e_oids integer[20]; // oid numbers for special edges in order found.
local NOT_VISIBLE,PART_VISIBLE,WHOLE_VISIBLE;
NOT_VISIBLE := 0;
PART_VISIBLE := 1;
WHOLE_VISIBLE := 2;
// jiggle size, small enough things get identified by dtorus
jeps := 1e-7;
// gather edge unit vectors
e_oids := 0;
inx := 1; single_count := 0;
foreach vertex[v_id].edge ee where tuber_status == tuber_edge_to_do do
{ evecs[inx] := ee.edge_vector/ee.length;
// jiggle a bit to avoid degneracy
evecs[inx] += { jeps*random,jeps*random,jeps*random };
evecs[inx] /= sqrt(evecs[inx]*evecs[inx]);
e_oids[inx] := ee.oid;
inx++;
};
ecount := inx-1;
if ecount == 0 then return;
if ecount == 1 then { edge_tuber_cap(v_id, radius); return; };
// calculate separating plane normals; note these point towards the inx edge, not away
for ( inx := 1 ; inx <= ecount ; inx++ )
for ( jnx := 1 ; jnx <= ecount ; jnx++ )
{ if inx == jnx then continue;
plane_normals[inx][jnx] := evecs[inx]-evecs[jnx];
plane_normals[inx][jnx] /= sqrt(plane_normals[inx][jnx]*plane_normals[inx][jnx]);
};
// Hub for each adjacent edge
for ( inx := 1 ; inx <= ecount ; inx++ )
{
local visible,lowray,highray,other,othercount;
define visible integer[20];
define lowray real[20][3];
define highray real[20][3];
define other integer[20];
local invec,ray,cross,refvec,bestrefvec;
local rays,kinx,jinx,low_neighbor,high_neighbor,raymag;
local startjinx,other_count,mindot,bestother;
define rays real[20][3];
define ray real[3];
define mray real[3];
if ecount == 2 then
{ othercount := 1;
}
else
{
// For each other plane, find its visibility and its neighbors
lowray := 0; highray := 0; visible := 0; other := 0; rays := 0;
// start with plane closest to inx edge
bestj := 0;
bestdot := -1;
for ( jinx := 1 ; jinx <= ecount ; jinx++ )
{ if jinx == inx then continue;
thisdot := evecs[jinx]*evecs[inx];
if thisdot > bestdot then
{ bestj := jinx;
bestdot := thisdot;
};
};
kinx := bestj;
ray := evecs[inx] + evecs[kinx];
ray /= sqrt(ray*ray); // starter ray
other[1] := kinx;
othercount := 1;
for(;;)
{
// now find next counterclockwise intersection ray with kinx plane
swangle := 2*pi;
bestm := 0;
for ( minx := 1 ; minx <= ecount ; minx++ )
{ if minx == inx or minx == kinx then continue;
// intersection ray
mray[1] := plane_normals[inx][kinx][2]*plane_normals[inx][minx][3]
- plane_normals[inx][kinx][3]*plane_normals[inx][minx][2];
mray[2] := plane_normals[inx][kinx][3]*plane_normals[inx][minx][1]
- plane_normals[inx][kinx][1]*plane_normals[inx][minx][3];
mray[3] := plane_normals[inx][kinx][1]*plane_normals[inx][minx][2]
- plane_normals[inx][kinx][2]*plane_normals[inx][minx][1];
raymag := sqrt(mray*mray);
mray /= raymag;
cc := mray*ray;
ss := ray[1]*mray[2]*plane_normals[inx][kinx][3] +
ray[2]*mray[3]*plane_normals[inx][kinx][1] +
ray[3]*mray[1]*plane_normals[inx][kinx][2] -
ray[3]*mray[2]*plane_normals[inx][kinx][1] -
ray[1]*mray[3]*plane_normals[inx][kinx][2] -
ray[2]*mray[1]*plane_normals[inx][kinx][3];
mangle := atan2(ss,cc);
if mangle < 0 then mangle += 2*pi;
if mangle < swangle then
{ swangle := mangle;
bestm := minx;
rays[othercount] := mray;
}
};
// detect loop
if bestm = other[1] then
break;
// no loop, so add to list
othercount++;
other[othercount] := bestm;
// prepare for next go-round
kinx := bestm;
ray := rays[othercount-1];
};
}; // end ecount > 2
// Create vertices and edges
local vspot,perp1,perp2,newv,minx,cinx,fudge1,sinx,basev,mag,sidesS,zinx,zones;
define invec real[3];
define vspot real[3];
define perp1 real[3];
define perp2 real[3];
define basev integer[edge_tuber_maxv];
if othercount == 1 then
{ // Simple butt junction of two edges
invec := evecs[1] + evecs[2];
mag := sqrt(invec*invec);
if mag < 0.00001 then
{ // straight junction
if abs(evecs[1][1]) > 0.5 then
invec := { -evecs[1][3], 0, evecs[1][1]}
else
invec := { 0, -evecs[1][3], evecs[1][2]};
mag := sqrt(invec*invec);
};
perp1 := invec/mag;
perp2 := { evecs[1][2]*perp1[3]-evecs[1][3]*perp1[2],
evecs[1][3]*perp1[1]-evecs[1][1]*perp1[3],
evecs[1][1]*perp1[2]-evecs[1][2]*perp1[1]};
perp2 /= sqrt(perp2*perp2);
sides := edge_tuber_sides;
fudge := sqrt(2)/sqrt(1-evecs[1]*evecs[2]);
for ( zinx := 1 ; zinx <= sides ; zinx++ )
{ vspot := vertex[v_id].__x + radius*(cos(zinx*2*pi/sides)*fudge*perp1 + sin(zinx*2*pi/sides)*perp2);
basev[zinx] := new_vertex(vspot[1],vspot[2],vspot[3]);
vertex[basev[zinx]].tuber_vec := (cos(zinx*2*pi/sides)*fudge*perp1 + sin(zinx*2*pi/sides)*perp2);
vertex[basev[zinx]].tuber_spot := vertex[v_id].__x;
};
foreach edge[e_oids[1]] ee do
{
if ee.oid > 0 then
{ for ( zinx := 1 ; zinx <= sides ; zinx++ )
ee.ehub[1][sides-zinx+1] := basev[zinx];
ee.ehub_count[1] := sides;
}
else
{ ee.ehub[2] := basev;
ee.ehub_count[2] := sides;
};
};
foreach edge[e_oids[2]] ee do
{
if ee.oid > 0 then
{ ee.ehub[1] := basev;
ee.ehub_count[1] := sides;
}
else
{ for ( zinx := 1 ; zinx <= sides ; zinx++ )
ee.ehub[2][sides-zinx+1] := basev[zinx];
ee.ehub_count[2] := sides;
};
};
}
else
{ // more complicated junction
for ( minx := 1 ; minx <= othercount ; minx++ )
{ local theta1,theta2,dtheta,cc,ss,det;
mminx := (minx == othercount) ? 1 : minx+1;
// invec is third vector in basis of plane_normal and ray1
cinx := other[mminx];
invec := evecs[inx] + evecs[cinx];
mag := sqrt(invec*invec);
if mag < 0.00001 then
{ // straight junction
invec := rays[minx];
mag := sqrt(invec*invec);
};
invec := invec/mag;
perp1[1] := plane_normals[inx][cinx][2]*invec[3] - plane_normals[inx][cinx][3]*invec[2];
perp1[2] := plane_normals[inx][cinx][3]*invec[1] - plane_normals[inx][cinx][1]*invec[3];
perp1[3] := plane_normals[inx][cinx][1]*invec[2] - plane_normals[inx][cinx][2]*invec[1];
perp1 /= -sqrt(perp1*perp1);
// stretch factor of intersection circle along invec
fudge1 := sqrt(2)/sqrt(1 - (evecs[cinx]*evecs[inx]));
// angle of ray1
theta1 := atan2((invec*rays[minx])/fudge1,perp1*rays[minx]);
// angle of ray2
theta2 := atan2((invec*rays[mminx])/fudge1,perp1*rays[mminx]);
dtheta := theta2 - theta1;
if dtheta < 0 then dtheta += 2*pi;
zones := ceil(dtheta/(2*pi)*edge_tuber_sides - 0.4978342); // so round to nearest whole number,
// with inexact adjustor to prevent
// coincidences giving two different
// zone numbers for different edges
// at the same vertex.
if zones == 0 then zones := 1;
for ( jnx := 0 ; jnx < zones ; jnx++ )
{ ss := sin(theta1 + jnx/zones*dtheta);
cc := cos(theta1 + jnx/zones*dtheta);
vspot := vertex[v_id].__x + radius*vertex[v_id].voffset + radius*(cc*perp1 + fudge1*ss*invec);
newv := new_vertex(vspot[1],vspot[2],vspot[3]);
vertex[newv].tuber_spot := vertex[v_id].__x;
vertex[newv].tuber_vec := vertex[v_id].voffset + cc*perp1 + fudge1*ss*invec;
foreach edge[e_oids[inx]] ee do
{
if ee.oid > 0 then
{
ee.ehub[1][edge_tuber_maxv - ee.ehub_count[1]] := newv;
ee.ehub_count[1] += 1;
}
else
{
ee.ehub_count[2] += 1;
ee.ehub[2][ee.ehub_count[2]] := newv;
};
};
}
}; // end minx
// Have to adjust hub list if tail of edge
foreach edge[e_oids[inx]] ee do
{
if ee.oid > 0 then
{ for ( jnx := 1 ; jnx <= ee.ehub_count[1] ; jnx++ )
ee.ehub[1][jnx] := ee.ehub[1][jnx + edge_tuber_maxv - ee.ehub_count[1]];
}
};
};
}; // end inx
} // end calc_vertex_hubs()
/*************************************************************************************/
// Checking for too-thick tubes, by checking for overlap of hub vertices at ends of edges.
// Returns 1 for all OK, 0 for not.
function integer edge_tuber_check()
{ local headmin,tailmax,evec,spot;
local inx;
define evec real[3];
foreach edge ee where tuber_status == tuber_edge_to_do do
{
evec := ee.edge_vector;
tailmax := -1e30;
for ( inx := 1; inx <= ee.ehub_count[1] ; inx++ )
{ spot := evec*vertex[ee.ehub[1][inx]].__x;
if spot > tailmax then tailmax := spot;
};
headmin := 1e30;
for ( inx := 1; inx <= ee.ehub_count[2] ; inx++ )
{ spot := evec*vertex[ee.ehub[2][inx]].__x;
if spot < headmin then headmin := spot;
};
if tailmax > headmin then
{ errprintf "edge_tube_check: tube radius too small on edge %d\n",ee.id;
return 0;
};
};
return 1;
} // end edge_tuber_check()
/*************************************************************************************/
procedure make_edge_tube(integer e_id)
{ // join hubs at ends of edge, calculating explicitly the best way to join them up.
local maxdot,bestheadhub,inx,iinx,taile,heade,newf,diagedge,evec,det;
local tailspot,headspot,tinx,hinx,mat,sidevec,sidedot,prevedge,dotSS;
local hinxv,tinxv;
define heade integer[edge_tuber_maxv];
define taile integer[edge_tuber_maxv];
define evec real[3];
define sidevec real[3];
define mat real[3][3];
define hinxv real[3];
define tinxv real[3];
foreach edge[e_id] ee do // just to get handy ee name
{
// Check hubs have been found.
if ee.ehub_count[1] <= 0 then
{ errprintf "edge_tuber internal error: edge %d tail hub not found.\n",e_id;
recalc;
abort;
};
if ee.ehub_count[2] <= 0 then
{ errprintf "edge_tuber internal error: edge %d head hub not found.\n",e_id;
return;
};
ee.tuber_status := tuber_edge_done;
// Find head hub vertex most aligned with first tail hub
local evec;
define evec real[3];
evec := ee.edge_vector;
maxdot := -1;
bestheadhub := 0;
for ( inx := 1 ; inx <= ee.ehub_count[2] ; inx++ )
{ sidevec := vertex[ee.ehub[2][inx]].__x - vertex[ee.ehub[1][1]].__x;
sidedot := (sidevec*evec)/sqrt(sidevec*sidevec);
if sidedot > maxdot then
{ bestheadhub := inx;
maxdot := sidedot;
}
};
if maxdot < 0.0 then
{ errprintf "edge_tuber error: can't align hubs on edge %d; edge too short for radius?\n",e_id;
return;
};
// Make round-the-hub edges
for ( inx := 1 ; inx <= ee.ehub_count[1] ; inx++ )
{ iinx := inx==ee.ehub_count[1] ? 1 : inx+1;
taile[inx] := new_edge(ee.ehub[1][inx],ee.ehub[1][iinx]);
};
for ( inx := 1 ; inx <= ee.ehub_count[2] ; inx++ )
{ iinx := inx==ee.ehub_count[2] ? 1 : inx+1;
heade[inx] := new_edge(ee.ehub[2][inx],ee.ehub[2][iinx]);
};
// Make longitudinal edges and facets, zigzagging in such a way as to keep edges
// as close as possible to parallel to edge. This creates an extra longitudinal edge
// but that is eliminated in the detorus phase.
tailspot := 1;
headspot := bestheadhub;
prevedge := new_edge(ee.ehub[1][tailspot],ee.ehub[2][headspot]);
do
{
hinx := (headspot == ee.ehub_count[2]) ? 1 : headspot + 1;
tinx := (tailspot == ee.ehub_count[1]) ? 1 : tailspot + 1;
// decide on basis of which way is more parallel
hinxv := vertex[ee.ehub[2][hinx]].__x - vertex[ee.ehub[1][tailspot]].__x;
tinxv := vertex[ee.ehub[2][headspot]].__x - vertex[ee.ehub[1][tinx]].__x;
if (hinxv*evec)/sqrt(hinxv*hinxv) > (tinxv*evec)/sqrt(tinxv*tinxv) then
{ // use head edge
diagedge := new_edge(ee.ehub[1][tailspot],ee.ehub[2][hinx]);
newf := new_facet(prevedge,heade[headspot],-diagedge);
headspot := hinx;
prevedge := diagedge;
}
else
{ // use tail edge
diagedge := new_edge(ee.ehub[1][tinx],ee.ehub[2][headspot]);
newf := new_facet(prevedge,-diagedge,-taile[tailspot]);
tailspot := tinx;
prevedge := diagedge;
};
/* not guaranteed to make progress!
// decide to zig or zag based on convexity of tube
mat[1] := vertex[ee.ehub[2][hinx]].__x - vertex[ee.ehub[1][tailspot]].__x;
mat[2] := vertex[ee.ehub[2][headspot]].__x - vertex[ee.ehub[1][tailspot]].__x;
mat[3] := vertex[ee.ehub[1][tinx]].__x - vertex[ee.ehub[1][tailspot]].__x;
det := matrix_determinant(mat);
if det > 0 then
{ // use head edge
diagedge := new_edge(ee.ehub[1][tailspot],ee.ehub[2][hinx]);
newf := new_facet(prevedge,heade[headspot],-diagedge);
headspot := hinx;
prevedge := diagedge;
}
else
{ // use tail edge
diagedge := new_edge(ee.ehub[1][tinx],ee.ehub[2][headspot]);
newf := new_facet(prevedge,-diagedge,-taile[tailspot]);
tailspot := tinx;
prevedge := diagedge;
};
*/
set facet[newf] tuber_orig_edge e_id;
} while ((tailspot != 1) or (headspot != bestheadhub)) ;
} // end for
} // end make_edge_tube()
/**********************************************************************************************/
// Adjust radius of existing tubes.
procedure edge_tuber_adjust_radius(real radius)
{
foreach vertex vv do
vv.__x := vv.tuber_spot + radius*vv.tuber_vec;
}
/************************************************************************************/
edge_tuber_model_checks := {
if torus then
{ errprintf "Cannot run 'edge_tuber' command in torus mode. Do 'detorus' first.\n";
abort;
};
if symmetry_group then
{ errprintf "Cannot run 'edge_tuber' command in symmetry group mode. Do 'detorus' first.\n";
abort;
};
if space_dimension != 3 then
{ errprintf "The 'edge_tuber' command must be run in three-dimensional space.\n";
abort;
};
if surface_dimension == 1 then
{ errprintf "The 'edge_tuber' command is not meant for the string model.\n";
abort;
};
if simplex_representation then
{ errprintf "The 'edge_tuber' command is not meant for the simplex model.\n";
abort;
};
if lagrange_order >= 2 then
{ errprintf "The 'edge_tuber' command is meant for the linear model, not quadratic or Lagrange.\n";
abort;
};
}
/*******************************************************************************/
// Basic tuber procedure. Set edge attribute tuber_status to tuber_edge_to_do
// on edges desired to be tubed before calling. Leaves such edges with
// tuber_status set to tuber_edge_done.
procedure edge_tuber(real radius)
{ edge_tuber_model_checks;
edge_tuber_maxv := edge_tuber_sides + 15; // room for a few extra vertices if needed
define edge attribute ehub integer[2][edge_tuber_maxv]; // vertex id's of hub vertices
set vertex tuber_spot __x;
set vertex tuber_vec 0;
set edge ehub 0;
set edge ehub_count 0;
foreach vertex vv do calc_vertex_hubs(vv.id,radius);
if edge_tuber_check() == 0 then
{ dissolve vertices;
abort;
};
foreach edge ee where tuber_status == tuber_edge_to_do do make_edge_tube(ee.id);
detorus; // to identify together all the matching hub vertices and edges.
}
// Tubing all the existing edges as a naked lattice, deleting all original edges and facets.
procedure edge_tuber_naked(real radius)
{
edge_tuber_model_checks;
set edge tuber_status tuber_edge_to_do;
dissolve facets;
edge_tuber(radius);
dissolve edges;
dissolve vertices;
}
// Tubing the dual skeleton, plus special edges.
procedure edge_tuber_dual(real radius)
{
edge_tuber_model_checks;
set edge tuber_status tuber_edge_to_do; // mark original edges
refine facet; // get hub points in each facet
edgeswap edge where tuber_status == tuber_edge_to_do and valence == 2; // dual edges
set edge tuber_status 4 where tuber_status != tuber_edge_to_do;
refine edge where valence != 2;
set edge tuber_status tuber_edge_to_do where tuber_status == 0;
set edge tuber_status 0 where tuber_status != tuber_edge_to_do;
dissolve facets;
edge_tuber(radius);
dissolve edges;
dissolve vertices;
}
if surface_dimension != 2 then
errprintf "\nedge_tuber: Error: tubing only works in soapfilm model.\n\n";
/* Usage:
Set edge_tuber_sides to desired value of sides around edge, default 6.
Set edge_tuber_cap_zones to number of latitudinal zones wanted on edge caps,
default 2.
Do one of the following:
a. To simply tube a given set of edges:
set edge tuber_status tuber_edge_to_do where ...
edge_tuber(radius)
b. To dissolve all facets and tube all edges:
edge_tuber_naked(radius)
c. To create dual edges and tube them:
edge_tuber_dual(radius)
To adjust the tube radius afterward (no checks on overlap):
edge_tuber_adjust_radius(radius)
Limitations: Only works with 3D soapfilm linear model, no torus or symmetry mode.
Will check for too-large tube radius and abort tubing.
*/
|