1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
/**************************************************************************/
/* Copyright 2012 Tim Day */
/* */
/* This file is part of Evolvotron */
/* */
/* Evolvotron is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* Evolvotron is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with Evolvotron. If not, see <http://www.gnu.org/licenses/>. */
/**************************************************************************/
/*! \file
\brief Interfaces and implementation for specific Function classes.
As much as possible of the implementation should be pushed into the FunctionBoilerplate template.
*/
#ifndef _functions_juliabrot_h_
#define _functions_juliabrot_h_
#include "common.h"
#include "function_boilerplate.h"
//------------------------------------------------------------------------------------------
//! Mandelbrot/Julia iterator for fractal functions.
/*! Returns i in 0 to iterations inclusive. i==iterations implies "in" set.
*/
inline uint brot(const real z0r,const real z0i,const real cr,const real ci,const uint iterations)
{
real zr=z0r;
real zi=z0i;
uint i;
for (i=0;i<iterations;i++)
{
const real zr2=zr*zr;
const real zi2=zi*zi;
if (zr2+zi2>4.0)
break;
const real nzr=zr2-zi2+cr;
const real nzi=2.0*zr*zi+ci;
zr=nzr;
zi=nzi;
}
return i;
}
//------------------------------------------------------------------------------------------
//! Function selects arg to evaluate based on test for point in Mandelbrot set.
FUNCTION_BEGIN(FunctionMandelbrotChoose,0,2,true,FnIterative|FnFractal)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
return (brot(0.0,0.0,p.x(),p.y(),iterations())==iterations() ? arg(0)(p) : arg(1)(p));
}
FUNCTION_END(FunctionMandelbrotChoose)
//-----------------------------------------------------------------------------------------
//! Function returns -1 for points in set, 0-1 for escaped points
FUNCTION_BEGIN(FunctionMandelbrotContour,0,0,true,FnIterative|FnFractal)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const uint i=brot(0.0,0.0,p.x(),p.y(),iterations());
return (i==iterations() ? XYZ::fill(-1.0) : XYZ::fill(static_cast<real>(i)/iterations()));
}
FUNCTION_END(FunctionMandelbrotContour)
//------------------------------------------------------------------------------------------
//! Function selects arg to evaluate based on test for point in Julia set.
FUNCTION_BEGIN(FunctionJuliaChoose,2,2,true,FnIterative|FnFractal)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
return (brot(p.x(),p.y(),param(0),param(1),iterations())==iterations() ? arg(0)(p) : arg(1)(p));
}
FUNCTION_END(FunctionJuliaChoose)
//------------------------------------------------------------------------------------------
//! Function returns -1 for points in set, 0-1 for escaped points
FUNCTION_BEGIN(FunctionJuliaContour,2,0,true,FnIterative|FnFractal)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const uint i=brot(p.x(),p.y(),param(0),param(1),iterations());
return (i==iterations() ? XYZ::fill(-1.0) : XYZ::fill(static_cast<real>(i)/iterations()));
}
FUNCTION_END(FunctionJuliaContour)
//------------------------------------------------------------------------------------------
//! Function selects arg to evaluate based on test for point in Juliabrot set.
/*! Juliabrot is 4 dimensional, but we only have 3 incoming parameters,
so have 4 4d-basis vector parameters.
*/
FUNCTION_BEGIN(FunctionJuliabrotChoose,16,2,true,FnIterative|FnFractal)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real zr=p.x()*param( 0)+p.y()*param( 1)+p.z()*param( 2)+param( 3);
const real zi=p.x()*param( 4)+p.y()*param( 5)+p.z()*param( 6)+param( 7);
const real cr=p.x()*param( 8)+p.y()*param( 9)+p.z()*param(10)+param(11);
const real ci=p.x()*param(12)+p.y()*param(13)+p.z()*param(14)+param(15);
return (brot(zr,zi,cr,ci,iterations())==iterations() ? arg(0)(p) : arg(1)(p));
}
FUNCTION_END(FunctionJuliabrotChoose)
//------------------------------------------------------------------------------------------
//! Function returns -1 for points in set, 0-1 for escaped points
/*! Juliabrot is 4 dimensional, but we only have 3 incoming parameters,
so have 4 4d-basis vector parameters.
*/
FUNCTION_BEGIN(FunctionJuliabrotContour,16,0,true,FnIterative|FnFractal)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real zr=p.x()*param( 0)+p.y()*param( 1)+p.z()*param( 2)+param( 3);
const real zi=p.x()*param( 4)+p.y()*param( 5)+p.z()*param( 6)+param( 7);
const real cr=p.x()*param( 8)+p.y()*param( 9)+p.z()*param(10)+param(11);
const real ci=p.x()*param(12)+p.y()*param(13)+p.z()*param(14)+param(15);
const uint i=brot(zr,zi,cr,ci,iterations());
return (i==iterations() ? XYZ::fill(-1.0) : XYZ::fill(static_cast<real>(i)/iterations()));
}
FUNCTION_END(FunctionJuliabrotContour)
//------------------------------------------------------------------------------------------
#endif
|