| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 
 | /**************************************************************************/
/*  Copyright 2012 Tim Day                                                */
/*                                                                        */
/*  This file is part of Evolvotron                                       */
/*                                                                        */
/*  Evolvotron is free software: you can redistribute it and/or modify    */
/*  it under the terms of the GNU General Public License as published by  */
/*  the Free Software Foundation, either version 3 of the License, or     */
/*  (at your option) any later version.                                   */
/*                                                                        */
/*  Evolvotron is distributed in the hope that it will be useful,         */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         */
/*  GNU General Public License for more details.                          */
/*                                                                        */
/*  You should have received a copy of the GNU General Public License     */
/*  along with Evolvotron.  If not, see <http://www.gnu.org/licenses/>.   */
/**************************************************************************/
/*! \file
  \brief Interfaces and implementation for specific Function classes.
  As much as possible of the implementation should be pushed into the FunctionBoilerplate template.
*/
#ifndef _functions_render_h_
#define _functions_render_h_
#include "common.h" 
#include "function_boilerplate.h"
//------------------------------------------------------------------------------------------
//! Rays intersecting a textured unit sphere
/*! arg(0) is background
    arg(1) is 3D texture for sphere
  param(0,1,2) is light source direction
  p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereShaded,3,2,false,FnRender)
  //! Evaluate function.
  virtual const XYZ evaluate(const XYZ& p) const
    {
      const real pr2=p.x()*p.x()+p.y()*p.y();
      if (pr2<1.0)
	{
	  const real z=-sqrt(1.0-pr2);
	  const XYZ n(p.x(),p.y(),z);
	  const XYZ lu(param(0),param(1),param(2));
	  const XYZ l(lu.normalised());
	  const real i=0.5*(1.0+l%n); // In range 0-1
	  return i*arg(1)(n);
	}
      else
	{
	  return arg(0)(p);
	}
    }
  
FUNCTION_END(FunctionOrthoSphereShaded)
//------------------------------------------------------------------------------------------
//! Rays intersecting a textured unit sphere, with bump mapping
/*! arg(0) is background
    arg(1) is 3D texture for sphere
    arg(2) is bump-map for sphere (take magnitude2)
  param(0,1,2) is light source direction
  p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereShadedBumpMapped,3,3,false,FnRender)
  //! Evaluate function.
  virtual const XYZ evaluate(const XYZ& p) const
    {
      const real pr2=p.x()*p.x()+p.y()*p.y();
      if (pr2<1.0)
	{
	  const real z=-sqrt(1.0-pr2);
	  const XYZ n(p.x(),p.y(),z);
	  // Tangent vectors
	  const XYZ east((XYZ(0.0,1.0,0.0)*n).normalised());
	  const XYZ north(n*east);
	  const real e0=(arg(2)(n-epsilon()*east)).magnitude2();
	  const real e1=(arg(2)(n+epsilon()*east)).magnitude2();
	  const real n0=(arg(2)(n-epsilon()*north)).magnitude2();
	  const real n1=(arg(2)(n+epsilon()*north)).magnitude2();
	  const real de=(e1-e0)*inv_epsilon2();
	  const real dn=(n1-n0)*inv_epsilon2();
	  const XYZ perturbed_n((n-east*de-north*dn).normalised());
	  const XYZ lu(param(0),param(1),param(2));
	  const XYZ l(lu.normalised());
	  const real i=0.5*(1.0+l%perturbed_n); // In range 0-1
	  return i*arg(1)(n);
	}
      else
	{
	  return arg(0)(p);
	}
    }
  
FUNCTION_END(FunctionOrthoSphereShadedBumpMapped)
//------------------------------------------------------------------------------------------
//! Rays reflecting off a unit sphere
/*! arg(0) is background
    arg(1) sampled using a normalised vector defines an environment for reflected rays
  p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereReflect,0,2,false,FnRender)
  //! Evaluate function.
  virtual const XYZ evaluate(const XYZ& p) const
    {
      const real pr2=p.x()*p.x()+p.y()*p.y();
      if (pr2<1.0)
	{
	  const real z=-sqrt(1.0-pr2);
	  // This is on surface of unit radius sphere - no need to normalise
	  XYZ n(p.x(),p.y(),z);
	  // The ray _towards_ the viewer v is (0 0 -1)
	  const XYZ v(0.0,0.0,-1.0);
	  // The reflected ray is (2n.v)n-v
	  const XYZ reflected((2.0*(n%v))*n-v);
	  return arg(1)(reflected);
	}
      else
	{
	  return arg(0)(p);
	}
    }
  
FUNCTION_END(FunctionOrthoSphereReflect)
//------------------------------------------------------------------------------------------
//! Rays reflecting off a bump mapped unit sphere
/*! arg(0) is background
    arg(1) sampled using a normalised vector defines an environment for reflected rays
    arg(2) is bump map
  p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereReflectBumpMapped,0,3,false,FnRender)
  //! Evaluate function.
  virtual const XYZ evaluate(const XYZ& p) const
    {
      const real pr2=p.x()*p.x()+p.y()*p.y();
      if (pr2<1.0)
	{
	  const real z=-sqrt(1.0-pr2);
	  // This is on surface of unit radius sphere - no need to normalise
	  XYZ n(p.x(),p.y(),z);
	  // Tangent vectors
	  const XYZ east((XYZ(0.0,1.0,0.0)*n).normalised());
	  const XYZ north(n*east);
	  const real e0=(arg(2)(n-epsilon()*east)).magnitude2();
	  const real e1=(arg(2)(n+epsilon()*east)).magnitude2();
	  const real n0=(arg(2)(n-epsilon()*north)).magnitude2();
	  const real n1=(arg(2)(n+epsilon()*north)).magnitude2();
	  const real de=(e1-e0)*inv_epsilon2();
	  const real dn=(n1-n0)*inv_epsilon2();
	  const XYZ perturbed_n((n-east*de-north*dn).normalised());
	  // The ray _towards_ the viewer is (0 0 -1)
	  const XYZ v(0.0,0.0,-1.0);
	  // The reflected ray is (2n.v)n-v
	  const XYZ reflected((2.0*(perturbed_n%v))*perturbed_n-v);
	  return arg(1)(reflected);
	}
      else
	{
	  return arg(0)(p);
	}
    }
  
FUNCTION_END(FunctionOrthoSphereReflectBumpMapped)
//------------------------------------------------------------------------------------------
#endif
 |