1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
/**************************************************************************/
/* Copyright 2012 Tim Day */
/* */
/* This file is part of Evolvotron */
/* */
/* Evolvotron is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* Evolvotron is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with Evolvotron. If not, see <http://www.gnu.org/licenses/>. */
/**************************************************************************/
/*! \file
\brief Interfaces and implementation for specific Function classes.
As much as possible of the implementation should be pushed into the FunctionBoilerplate template.
*/
#ifndef _functions_spherical_h_
#define _functions_spherical_h_
#include "common.h"
#include "function_boilerplate.h"
//------------------------------------------------------
//! Transforms cartesian coordinates to spherical
FUNCTION_BEGIN(FunctionCartesianToSpherical,0,0,false,0)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real r=p.magnitude();
// Angles are normalised (-1 to +1) over their usual possible range.
const real theta=atan2(p.y(),p.x())*(1.0/M_PI);
const real phi=(r== 0.0 ? 0.0 : asin(p.z()/r)*(1.0/(0.5*M_PI)));
return XYZ(r,theta,phi);
}
FUNCTION_END(FunctionCartesianToSpherical)
//------------------------------------------------------------------------------------------
//! Transforms spherical coordinates to cartesian
FUNCTION_BEGIN(FunctionSphericalToCartesian,0,0,false,0)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real r=p.x();
const real theta=M_PI*p.y();
const real phi=0.5*M_PI*p.z();
const real x=r*cos(theta)*sin(phi);
const real y=r*sin(theta)*sin(phi);
const real z=r*cos(phi);
return XYZ(x,y,z);
}
FUNCTION_END(FunctionSphericalToCartesian)
//------------------------------------------------------------------------------------------
// Converts the position argument to spherical coords, pass these through the leaf node, and convert the result back to cartesian.
FUNCTION_BEGIN(FunctionEvaluateInSpherical,0,1,false,0)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real in_r=p.magnitude();
const real in_theta=atan2(p.y(),p.x())*(1.0/M_PI);
const real in_phi=(in_r== 0.0 ? 0.0 : asin(p.z()/in_r)*(1.0/(0.5*M_PI)));
const XYZ v(arg(0)(XYZ(in_r,in_theta,in_phi)));
const real out_r=v.x();
const real out_theta=M_PI*v.y();
const real out_phi=0.5*M_PI*v.z();
const real x=out_r*cos(out_theta)*sin(out_phi);
const real y=out_r*sin(out_theta)*sin(out_phi);
const real z=out_r*cos(out_phi);
return XYZ(x,y,z);
}
FUNCTION_END(FunctionEvaluateInSpherical)
//------------------------------------------------------------------------------------------
#endif
|