1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/**************************************************************************/
/* Copyright 2012 Tim Day */
/* */
/* This file is part of Evolvotron */
/* */
/* Evolvotron is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* Evolvotron is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with Evolvotron. If not, see <http://www.gnu.org/licenses/>. */
/**************************************************************************/
/*! \file
\brief Interface for class XY.
*/
#ifndef _xy_h_
#define _xy_h_
#include "common.h"
//! Class to hold vectors in 2D cartesian co-ordinates.
/*! Direct access to the x,y members is not permitted.
*/
class XY
{
protected:
boost::array<real,2> _rep;
public:
//@{
//! Accessor.
real x() const
{
return _rep[0];
}
real y() const
{
return _rep[1];
}
void x(real v)
{
_rep[0]=v;
}
void y(real v)
{
_rep[1]=v;
}
//@}
//! Null constructor.
/*! NB The components are not cleared to zero.
*/
XY()
{}
//! Copy constructor.
XY(const XY& v)
{
_rep[0]=v._rep[0];
_rep[1]=v._rep[1];
}
//! Initialise from separate components.
XY(real vx,real vy)
{
_rep[0]=vx;
_rep[1]=vy;
}
//! Trivial destructor.
~XY()
{}
//! Subtract a vector
void operator-=(const XY& v)
{
_rep[0]-=v._rep[0];
_rep[1]-=v._rep[1];
}
//! Add a vector
void operator+=(const XY& v)
{
_rep[0]+=v._rep[0];
_rep[1]+=v._rep[1];
}
//! Multiply by scalar
void operator*=(real k)
{
_rep[0]*=k;
_rep[1]*=k;
}
//! Divide by scalar.
/*! Implemented assuming one divide and two multiplies is faster than two divides.
*/
void operator/=(real k)
{
const real ik(1.0/k);
(*this)*=ik;
}
//! Assignment.
void assign(const XY& v)
{
x(v.x());
y(v.y());
}
//! Negation.
const XY operator-() const
{
return XY(-x(),-y());
}
//! Return the square of the magnitude.
real magnitude2() const
{
return x()*x()+y()*y();
}
//! Return the magnitude.
real magnitude() const
{
return sqrt(magnitude2());
}
//! Returns sum of x and y components.
real sum_of_components() const
{
return x()+y();
}
//! Return the vector normalised.
const XY normalised() const;
//! Normalise this vector.
void normalise();
//! Returns true if an origin centred rectangle with this vectors' semi-axes contains the argument.
bool origin_centred_rect_contains(const XY& p) const
{
return (-x()<=p.x() && p.x()<=x() && -y()<=p.y() && p.y()<=y());
}
//! Write the vector.
std::ostream& write(std::ostream&) const;
//! Helper for common case of creating an instance filled with a common value.
static const XY fill(real v)
{
return XY(v,v);
}
};
//! Dot product.
/*! Perhaps a curious choice of operator but it works for me.
*/
inline real operator%(const XY& a,const XY& b)
{
return a.x()*b.x()+a.y()*b.y();
}
//! Vector addition.
inline const XY operator+(const XY& a,const XY& b)
{
return XY(a.x()+b.x(),a.y()+b.y());
}
//! Vector subtraction.
inline const XY operator-(const XY& a,const XY& b)
{
return XY(a.x()-b.x(),a.y()-b.y());
}
//! Multiplication by scalar.
inline const XY operator*(real k,const XY& v)
{
XY ret(v);
ret*=k;
return ret;
}
//! Multiplication by scalar.
inline const XY operator*(const XY& v,real k)
{
XY ret(v);
ret*=k;
return ret;
}
//! Division by scalar.
inline const XY operator/(const XY& v,real k)
{
return v*(1.0/k);
}
/*! If magnitude is zero we return zero vector.
*/
inline const XY XY::normalised() const
{
const real m=magnitude();
return (m==0.0 ? XY(0.0,0.0) : (*this)/m);
}
inline void XY::normalise()
{
(*this)=normalised();
}
//! Stream output operator.
/*! Calls write().
*/
inline std::ostream& operator<<(std::ostream& out,const XY& v)
{
return v.write(out);
}
#endif
|