1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/**************************************************************************/
/* Copyright 2012 Tim Day */
/* */
/* This file is part of Evolvotron */
/* */
/* Evolvotron is free software: you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, either version 3 of the License, or */
/* (at your option) any later version. */
/* */
/* Evolvotron is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with Evolvotron. If not, see <http://www.gnu.org/licenses/>. */
/**************************************************************************/
/*! \file
\brief Interfaces and implementation for specific Function classes.
As much as possible of the implementation should be pushed into the FunctionBoilerplate template.
*/
#ifndef _functions_render_h_
#define _functions_render_h_
#include "useful.h"
#include "function_boilerplate.h"
//------------------------------------------------------------------------------------------
//! Rays intersecting a textured unit sphere
/*! arg(0) is background
arg(1) is 3D texture for sphere
param(0,1,2) is light source direction
p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereShaded,3,2,false,FnRender)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real pr2=p.x()*p.x()+p.y()*p.y();
if (pr2<1.0)
{
const real z=-sqrt(1.0-pr2);
const XYZ n(p.x(),p.y(),z);
const XYZ lu(param(0),param(1),param(2));
const XYZ l(lu.normalised());
const real i=0.5*(1.0+l%n); // In range 0-1
return i*arg(1)(n);
}
else
{
return arg(0)(p);
}
}
FUNCTION_END(FunctionOrthoSphereShaded)
//------------------------------------------------------------------------------------------
//! Rays intersecting a textured unit sphere, with bump mapping
/*! arg(0) is background
arg(1) is 3D texture for sphere
arg(2) is bump-map for sphere (take magnitude2)
param(0,1,2) is light source direction
p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereShadedBumpMapped,3,3,false,FnRender)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real pr2=p.x()*p.x()+p.y()*p.y();
if (pr2<1.0)
{
const real z=-sqrt(1.0-pr2);
const XYZ n(p.x(),p.y(),z);
// Tangent vectors
const XYZ east((XYZ(0.0,1.0,0.0)*n).normalised());
const XYZ north(n*east);
const real e0=(arg(2)(n-epsilon()*east)).magnitude2();
const real e1=(arg(2)(n+epsilon()*east)).magnitude2();
const real n0=(arg(2)(n-epsilon()*north)).magnitude2();
const real n1=(arg(2)(n+epsilon()*north)).magnitude2();
const real de=(e1-e0)*inv_epsilon2();
const real dn=(n1-n0)*inv_epsilon2();
const XYZ perturbed_n((n-east*de-north*dn).normalised());
const XYZ lu(param(0),param(1),param(2));
const XYZ l(lu.normalised());
const real i=0.5*(1.0+l%perturbed_n); // In range 0-1
return i*arg(1)(n);
}
else
{
return arg(0)(p);
}
}
FUNCTION_END(FunctionOrthoSphereShadedBumpMapped)
//------------------------------------------------------------------------------------------
//! Rays reflecting off a unit sphere
/*! arg(0) is background
arg(1) sampled using a normalised vector defines an environment for reflected rays
p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereReflect,0,2,false,FnRender)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real pr2=p.x()*p.x()+p.y()*p.y();
if (pr2<1.0)
{
const real z=-sqrt(1.0-pr2);
// This is on surface of unit radius sphere - no need to normalise
XYZ n(p.x(),p.y(),z);
// The ray _towards_ the viewer v is (0 0 -1)
const XYZ v(0.0,0.0,-1.0);
// The reflected ray is (2n.v)n-v
const XYZ reflected((2.0*(n%v))*n-v);
return arg(1)(reflected);
}
else
{
return arg(0)(p);
}
}
FUNCTION_END(FunctionOrthoSphereReflect)
//------------------------------------------------------------------------------------------
//! Rays reflecting off a bump mapped unit sphere
/*! arg(0) is background
arg(1) sampled using a normalised vector defines an environment for reflected rays
arg(2) is bump map
p.x, p.y is the 2D position of a ray from infinity travelling in direction (0 0 1)
*/
FUNCTION_BEGIN(FunctionOrthoSphereReflectBumpMapped,0,3,false,FnRender)
//! Evaluate function.
virtual const XYZ evaluate(const XYZ& p) const
{
const real pr2=p.x()*p.x()+p.y()*p.y();
if (pr2<1.0)
{
const real z=-sqrt(1.0-pr2);
// This is on surface of unit radius sphere - no need to normalise
XYZ n(p.x(),p.y(),z);
// Tangent vectors
const XYZ east((XYZ(0.0,1.0,0.0)*n).normalised());
const XYZ north(n*east);
const real e0=(arg(2)(n-epsilon()*east)).magnitude2();
const real e1=(arg(2)(n+epsilon()*east)).magnitude2();
const real n0=(arg(2)(n-epsilon()*north)).magnitude2();
const real n1=(arg(2)(n+epsilon()*north)).magnitude2();
const real de=(e1-e0)*inv_epsilon2();
const real dn=(n1-n0)*inv_epsilon2();
const XYZ perturbed_n((n-east*de-north*dn).normalised());
// The ray _towards_ the viewer is (0 0 -1)
const XYZ v(0.0,0.0,-1.0);
// The reflected ray is (2n.v)n-v
const XYZ reflected((2.0*(perturbed_n%v))*perturbed_n-v);
return arg(1)(reflected);
}
else
{
return arg(0)(p);
}
}
FUNCTION_END(FunctionOrthoSphereReflectBumpMapped)
//------------------------------------------------------------------------------------------
#endif
|