1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
#include <cmath>
#include <algorithm>
#include <iostream>
#include "ContourMatching.hh"
const unsigned int logo_trans_before_rot=10000; // TODO: calculate useful value !!
class LengthSorter
{
public:
const std::vector <Contours::Contour*>& contours;
LengthSorter(const std::vector <Contours::Contour*>& contour_list)
: contours(contour_list) {}
bool operator() (unsigned int i, unsigned int j)
{
return contours[i]->size() > contours[j]->size();
}
};
class MatchSorter
{
public:
bool operator() (const LogoRepresentation::Match* a, const LogoRepresentation::Match* b)
{
return a->score > b->score;
}
};
LogoRepresentation::LogoRepresentation(Contours* logo_contours,
unsigned int max_feature_no,
unsigned int max_avg_tolerance,
unsigned int reduction_shift,
double maximum_angle,
double angle_step)
{
source=logo_contours;
tolerance=max_avg_tolerance;
shift=reduction_shift;
rot_max=maximum_angle;
rot_step=angle_step;
total_contour_length=0;
logo_set_count=source->contours.size();
logo_set_map.resize(logo_set_count);
for (unsigned int i=0; i<logo_set_count; i++)
logo_set_map[i]=i;
if (logo_set_count > max_feature_no) {
std::sort(logo_set_map.begin(), logo_set_map.end(), LengthSorter(source->contours));
logo_set_count=max_feature_no;
}
centerx=.0;
centery=.0;
unsigned int count=0;
for (unsigned int i=0; i<logo_set_count; i++) {
count+=source->contours[logo_set_map[i]]->size();
for (unsigned int j=0; j<source->contours[logo_set_map[i]]->size(); j++) {
centerx += (*(source->contours[logo_set_map[i]]))[j].first;
centery += (*(source->contours[logo_set_map[i]]))[j].second;
}
}
centerx/=(double)count;
centery/=(double)count;
double angle=.0;
rot_max=std::min(359.9, fabs(rot_max));
rot_step=std::max(rot_step, 0.5);
do {
logo_sets.push_back(std::vector <LogoContourData> (logo_set_count));
for (unsigned int c=0; c<logo_set_count; c++) {
LogoContourData& data=logo_sets.back()[c];
data.contour=new Contours::Contour();
if (angle==0) {
CenterAndReduce(*(source->contours[logo_set_map[c]]),
*data.contour,
shift,
data.rx,
data.ry);
total_contour_length+=source->contours[logo_set_map[c]]->size();
} else
RotCenterAndReduce(*(source->contours[logo_set_map[c]]),
*data.contour,
M_PI*angle / 180.0,
logo_trans_before_rot,
shift,
data.rx,
data.ry);
}
if (angle > 0) {
angle=-angle;
} else {
angle=-angle+rot_step;
}
} while (angle <= rot_max);
}
LogoRepresentation::~LogoRepresentation()
{
for (unsigned int s=0; s<logo_sets.size(); s++)
for (unsigned int j=0; j<logo_set_count; j++)
delete logo_sets[s][j].contour;
}
double LogoRepresentation::Score(Contours* image)
{
unsigned int image_set_count=image -> contours.size();
if (image_set_count==0 || logo_set_count==0) {
std::cerr << "Warning: nothing to match..." << std::endl;
return 0.0;
}
// build image set
image_set.resize(image_set_count);
for (unsigned int c=0; c<image_set_count; c++) {
ImageContourData& data=image_set[c];
data.contour=new Contours::Contour();
CenterAndReduce(*(image->contours[c]),
*data.contour,
shift,
data.rx,
data.ry);
}
// calculate 1 to 1 matching scores
for (unsigned int s=0; s<logo_sets.size(); s++)
for (unsigned int j=0; j<logo_set_count; j++) {
logo_sets[s][j].matches.resize(image_set_count);
for (unsigned int i=0; i<image_set_count; i++)
logo_sets[s][j].matches[i]=new Match(image_set[i], logo_sets[s][j], tolerance, shift,
source->contours[logo_set_map[j]]->size(), image->contours[i]);
}
// calculate heuristic n to m matching
double score=.0;
unsigned int best_set=0;
unsigned int best_pivot=0;
for (unsigned int s=0; s<logo_sets.size(); s++) {
unsigned int pivot=0;
double current=N_M_Match(s, pivot);
if (current > score) {
score=current;
best_set=s;
best_pivot=pivot;
}
}
// starting parameters optained from heuristic
score=(score/ (double) total_contour_length) / (double) tolerance;
std::cout << "heuristic score: " << score << std::endl;
const LogoContourData& result=logo_sets[best_set][best_pivot];
logo_translation.first=(int)result.matches[result.n_to_n_match_index]->transx;
logo_translation.second=(int)result.matches[result.n_to_n_match_index]->transy;
if (best_set==0)
rot_angle=.0;
else {
logo_translation.first+=logo_trans_before_rot;
logo_translation.second+=logo_trans_before_rot;
rot_angle=rot_step*(double)((best_set+1)/2);
if (best_set%2==0)
rot_angle=-rot_angle;
}
mapping.resize(logo_set_count);
for (unsigned int i=0; i<logo_set_count; i++) {
mapping[i]=std::pair <Contours::Contour*, Contours::Contour*>
(source->contours[logo_set_map[i]],
logo_sets[best_set][i].matches[logo_sets[best_set][i].n_to_n_match_index]->cimg);
}
// adjust translation
// (this is a quick workaround to the shifted-centroid phenomenon)
Contours::Contour tmp;
double rax=.0;
double ray=.0;
double rbx=.0;
double rby=.0;
RotCenterAndReduce(*(mapping[best_pivot].first), tmp, M_PI*rot_angle/180.0,
logo_trans_before_rot, 0, rax, ray);
rax-=(double)logo_trans_before_rot;
ray-=(double)logo_trans_before_rot;
tmp.clear();
const Contours::Contour& second=*(mapping[best_pivot].second);
for (unsigned int i=0; i<second.size(); i++) {
rbx+=second[i].first;
rby+=second[i].second;
}
rbx/=(double)second.size();
rby/=(double)second.size();
int newtx=(int)(rbx-rax);
int newty=(int)(rby-ray);
std::cout << "adjusting translation: "
<< logo_translation.first << "\t"
<< logo_translation.second << "\t->\t"
<< newtx << "\t" << newty << std::endl;
logo_translation.first=newtx;
logo_translation.second=newty;
// optimize
score=PrecisionScore();
//#if false
/*
double oldrx=.0;
double oldry=.0;
double newrx=.0;
double newry=.0;
RotatedCentroidPosition(oldrx, oldry);
rot_angle-=10;
RotatedCentroidPosition(newrx, newry);
logo_translation.first+=(int)(oldrx-newrx);
logo_translation.second+=(int)(oldry-newry);
*/
bool improved=true;
unsigned int precision_iterations=4;
//if (false)
for (unsigned int run=0; run <= precision_iterations && improved ; run++) {
std::cout << score
<< "\t" << logo_translation.first
<< "\t" << logo_translation.second
<< "\t" << rot_angle << std::endl;
improved=false;
if (run < precision_iterations) {
improved=Optimize(score);
}
}
//#endif
// clean up
for (unsigned int s=0; s<logo_sets.size(); s++)
for (unsigned int j=0; j<logo_set_count; j++) {
for (unsigned int i=0; i<image_set_count; i++)
delete logo_sets[s][j].matches[i];
logo_sets[s][j].matches.clear();
}
for (unsigned int j=0; j<image_set_count; j++)
delete image_set[j].contour;
image_set.clear();
return score;
}
const std::pair<int, int>& LogoRepresentation::CalculateInverseTranslation(int rx, int ry)
{
double x=(double)logo_translation.first - rx;
double y=(double)logo_translation.second - ry;
double c=cos(-M_PI*rot_angle/180.0);
double s=sin(-M_PI*rot_angle/180.0);
double xx=c*x - s*y;
double yy=s*x + c*y;
inverse_translation.first=rx+(int)xx;
inverse_translation.second=ry+(int)yy;
return inverse_translation;
}
double LogoRepresentation::N_M_Match(unsigned int set, unsigned int& pivot)
{
std::vector <LogoContourData>& data=logo_sets[set];
for (unsigned int i=0; i<logo_set_count; i++) {
std::sort(data[i].matches.begin(), data[i].matches.end(), MatchSorter());
//std::cout << "BEST\t" << data[i].matches[0]->score << std::endl;
}
unsigned int image_set_count=data[0].matches.size();
const unsigned int depth=5;
const unsigned int counterdepth=1000;
int mdepth=std::min(image_set_count, depth);
int ndepth=std::min(image_set_count, counterdepth);
double bestsum=.0;
pivot=0;
unsigned int tmpbest[logo_set_count];
for (unsigned int base=0; base < logo_set_count; base++)
for (int m=0; m < mdepth; m++) {
double sum=data[base].matches[m]->score;
double tx=data[base].matches[m]->transx;
double ty=data[base].matches[m]->transy;
tmpbest[base]=m;
for (unsigned int counter=0; counter < logo_set_count; counter++)
if (counter != base) {
double best=.0;
tmpbest[counter]=0;
for (int n=0; n < ndepth; n++){
double current=data[counter].matches[n]->TransScore(tx, ty);
if (current > best) {
best=current;
tmpbest[counter]=n;
}
}
sum+=best;
}
if (sum > bestsum) {
bestsum=sum;
pivot=base;
for (unsigned int i=0; i<logo_set_count; i++)
data[i].n_to_n_match_index=tmpbest[i];
}
}
//std::cout << pivot << std::endl;
return bestsum;
}
double LogoRepresentation::PrecisionScore()
{
Contours::Contour tmp;
double trash;
//double sum=(double)tolerance*(double)total_contour_length;
double sum=.0;
unsigned int length=0;
double tx=(double)logo_translation.first-(double)logo_trans_before_rot;
double ty=(double)logo_translation.second-(double)logo_trans_before_rot;
for (unsigned int i=0; i<logo_set_count; i++) {
tmp.clear();
RotCenterAndReduce(*mapping[i].first, tmp, M_PI*rot_angle/180.0,
logo_trans_before_rot, 0, trash, trash);
double current=(double)tolerance*(double)tmp.size();
length+=tmp.size();
current-=L1Dist(tmp, *mapping[i].second,
0.0, 0.0, tx, ty, 0, trash, trash);
//std::cout << "match " << i << "\t" << current << std::endl;
sum+=std::max(0.0, current);
}
sum=(sum/ (double)length) / (double) tolerance;
return sum;
};
void LogoRepresentation::RotatedCentroidPosition(double& rx, double& ry)
{
double c=cos(M_PI*rot_angle/180.0);
double s=sin(M_PI*rot_angle/180.0);
rx=c*centerx - s*centery;
ry=s*centerx + c*centery;
// std::cout << centerx << "\t" << centery << "\t\t" << rx << "\t" << ry <<std::endl;
}
bool LogoRepresentation::OptimizeAngle(double& score, double delta)
{
double oldrx=.0;
double oldry=.0;
double newrx=.0;
double newry=.0;
std::pair<int, int> o_translation=logo_translation;
double o_angle=rot_angle;
RotatedCentroidPosition(oldrx, oldry);
rot_angle+=delta;
RotatedCentroidPosition(newrx, newry);
logo_translation.first+=(int)(oldrx-newrx);
logo_translation.second+=(int)(oldry-newry);
double new_score=PrecisionScore();
if (new_score > score) {
score=new_score;
return true;
}
logo_translation=o_translation;
rot_angle=o_angle;
return false;
}
bool LogoRepresentation::OptimizeHTranslation(double& score, int delta)
{
logo_translation.first+=delta;
double new_score=PrecisionScore();
if (new_score > score) {
score=new_score;
return true;
}
logo_translation.first-=delta;
return false;
}
bool LogoRepresentation::OptimizeVTranslation(double& score, int delta)
{
logo_translation.second+=delta;
double new_score=PrecisionScore();
if (new_score > score) {
score=new_score;
return true;
}
logo_translation.second-=delta;
return false;
}
bool LogoRepresentation::Optimize(double& score)
{
bool improvement=false;
const double start_angle_delta=2.0;
const double end_angle_delta=0.01; // was 0.1 -ReneR 2007-08-06
double delta=start_angle_delta;
do {
bool success=false;
while (OptimizeAngle(score, delta))
success=true;
if (!success)
while (OptimizeAngle(score, -delta))
success=true;
improvement |= success;
delta /= 2.0;
} while (delta >= end_angle_delta );
bool successh=false;
while (OptimizeHTranslation(score, +1))
successh=true;
if (!successh)
while (OptimizeHTranslation(score, -1))
successh=true;
improvement |= successh;
bool successv=false;
while (OptimizeVTranslation(score, +1))
successv=true;
if (!successv)
while (OptimizeVTranslation(score, -1))
successv=true;
improvement |= successv;
return improvement;
};
LogoRepresentation::Match::Match(const ImageContourData& image,
const LogoContourData& logo,
int tolerance,
int shift,
unsigned int original_logo_length,
Contours::Contour* icimg)
{
length=original_logo_length;
cimg=icimg;
score=(double)tolerance*(double)length;
score-=L1Dist(*logo.contour, *image.contour, logo.rx, logo.ry, image.rx, image.ry, shift, transx, transy);
if (score < 0.0)
score=.0;
}
double LogoRepresentation::Match::TransScore(double tx, double ty)
{
return std::max(.0, score - 0.5*((double)length*(fabs(tx-transx)+fabs(ty-transy))));
}
|