1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
|
// =================================================================================================
// Copyright 2004 Adobe
// All Rights Reserved.
//
// NOTICE: Adobe permits you to use, modify, and distribute this file in accordance with the terms
// of the Adobe license agreement accompanying it.
//
// Adobe patent application tracking #P435, entitled 'Unique markers to simplify embedding data of
// one format in a file with a different format', inventors: Sean Parent, Greg Gilley.
// =================================================================================================
#if WIN32
#pragma warning ( disable : 4127 ) // conditional expression is constant
#pragma warning ( disable : 4510 ) // default constructor could not be generated
#pragma warning ( disable : 4610 ) // user defined constructor required
#pragma warning ( disable : 4786 ) // debugger can't handle long symbol names
#endif
#include "public/include/XMP_Environment.h" // ! XMP_Environment.h must be the first included header.
#include "public/include/XMP_Const.h"
#include "XMPFiles/source/FormatSupport/XMPScanner.hpp"
#include <cassert>
#include <string>
#include <cstdlib>
#if DEBUG
#include <iostream>
#include <iomanip>
#include <fstream>
#endif
#if TestRunnerBuild
#define EnablePacketScanning 1
#else
#include "XMPFiles/source/XMPFiles_Impl.hpp"
#endif
#ifndef UseStringPushBack // VC++ 6.x does not provide push_back for strings!
#define UseStringPushBack 0
#endif
using namespace std;
#if EnablePacketScanning
// =================================================================================================
// =================================================================================================
// class PacketMachine
// ===================
//
// This is the packet recognizer state machine. The top of the machine is FindNextPacket, this
// calls the specific state components and handles transitions. The states are described by an
// array of RecognizerInfo records, indexed by the RecognizerKind enumeration. Each RecognizerInfo
// record has a function that does that state's work, the success and failure transition states,
// and a string literal that is passed to the state function. The literal lets a common MatchChar
// or MatchString function be used in several places.
//
// The state functions are responsible for consuming input to recognize their particular state.
// This includes intervening nulls for 16 and 32 bit character forms. For the simplicity, things
// are treated as essentially little endian and the nulls are not actually checked. The opening
// '<' is found with a byte-by-byte search, then the number of bytes per character is determined
// by counting the following nulls. From then on, consuming a character means incrementing the
// buffer pointer by the number of bytes per character. Thus the buffer pointer only points to
// the "real" bytes. This also means that the pointer can go off the end of the buffer by a
// variable amount. The amount of overrun is saved so that the pointer can be positioned at the
// right byte to start the next buffer.
//
// The state functions return a TriState value, eTriYes means the pattern was found, eTriNo means
// the pattern was definitely not found, eTriMaybe means that the end of the buffer was reached
// while working through the pattern.
//
// When eTriYes is returned, the fBufferPtr data member is left pointing to the "real" byte
// following the last actual byte. Which might not be addressable memory! This also means that
// a state function can be entered with nothing available in the buffer. When eTriNo is returned,
// the fBufferPtr data member is left pointing to the byte that caused the failure. The state
// machine starts over from the failure byte.
//
// The state functions must preserve their internal micro-state before returning eTriMaybe, and
// resume processing when called with the next buffer. The fPosition data member is used to denote
// how many actual characters have been consumed. The fNullCount data member is used to denote how
// many nulls are left before the next actual character.
// =================================================================================================
// PacketMachine
// =============
XMPScanner::PacketMachine::PacketMachine ( XMP_Int64 bufferOffset, const void * bufferOrigin, XMP_Int64 bufferLength ) :
// Public members
fPacketStart ( 0 ),
fPacketLength ( 0 ),
fBytesAttr ( -1 ),
fCharForm ( eChar8Bit ),
fAccess ( ' ' ),
fBogusPacket ( false ),
// Private members
fBufferOffset ( bufferOffset ),
fBufferOrigin ( (const char *) bufferOrigin ),
fBufferPtr ( fBufferOrigin ),
fBufferLimit ( fBufferOrigin + bufferLength ),
fRecognizer ( eLeadInRecognizer ),
fPosition ( 0 ),
fBytesPerChar ( 1 ),
fBufferOverrun ( 0 ),
fQuoteChar ( ' ' )
{
/*
REVIEW NOTES : Should the buffer stuff be in a class?
*/
assert ( bufferOrigin != NULL );
assert ( bufferLength != 0 );
} // PacketMachine
// =================================================================================================
// ~PacketMachine
// ==============
XMPScanner::PacketMachine::~PacketMachine ()
{
// An empty placeholder.
} // ~PacketMachine
// =================================================================================================
// AssociateBuffer
// ===============
void
XMPScanner::PacketMachine::AssociateBuffer ( XMP_Int64 bufferOffset, const void * bufferOrigin, XMP_Int64 bufferLength )
{
fBufferOffset = bufferOffset;
fBufferOrigin = (const char *) bufferOrigin;
fBufferPtr = fBufferOrigin + fBufferOverrun;
fBufferLimit = fBufferOrigin + bufferLength;
} // AssociateBuffer
// =================================================================================================
// ResetMachine
// ============
void
XMPScanner::PacketMachine::ResetMachine ()
{
fRecognizer = eLeadInRecognizer;
fPosition = 0;
fBufferOverrun = 0;
fCharForm = eChar8Bit;
fBytesPerChar = 1;
fAccess = ' ';
fBytesAttr = -1;
fBogusPacket = false;
fAttrName.erase ( fAttrName.begin(), fAttrName.end() );
fAttrValue.erase ( fAttrValue.begin(), fAttrValue.end() );
fEncodingAttr.erase ( fEncodingAttr.begin(), fEncodingAttr.end() );
} // ResetMachine
// =================================================================================================
// FindLessThan
// ============
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::FindLessThan ( PacketMachine * ths, const char * which )
{
if ( *which == 'H' ) {
// --------------------------------------------------------------------------------
// We're looking for the '<' of the header. If we fail there is no packet in this
// part of the input, so return eTriNo.
ths->fCharForm = eChar8Bit; // We might have just failed from a bogus 16 or 32 bit case.
ths->fBytesPerChar = 1;
while ( ths->fBufferPtr < ths->fBufferLimit ) { // Don't skip nulls for the header's '<'!
if ( *ths->fBufferPtr == '<' ) break;
ths->fBufferPtr++;
}
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriNo;
ths->fBufferPtr++;
return eTriYes;
} else {
// --------------------------------------------------------------------------------
// We're looking for the '<' of the trailer. We're already inside the packet body,
// looking for the trailer. So here if we fail we must return eTriMaybe so that we
// keep looking for the trailer in the next buffer.
const int bytesPerChar = ths->fBytesPerChar;
while ( ths->fBufferPtr < ths->fBufferLimit ) {
if ( *ths->fBufferPtr == '<' ) break;
ths->fBufferPtr += bytesPerChar;
}
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
ths->fBufferPtr += bytesPerChar;
return eTriYes;
}
} // FindLessThan
// =================================================================================================
// MatchString
// ===========
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::MatchString ( PacketMachine * ths, const char * literal )
{
const int bytesPerChar = ths->fBytesPerChar;
const char * litPtr = literal + ths->fPosition;
const XMP_Int32 charsToGo = (XMP_Int32) (strlen ( literal ) - ths->fPosition);
int charsDone = 0;
while ( (charsDone < charsToGo) && (ths->fBufferPtr < ths->fBufferLimit) ) {
if ( *litPtr != *ths->fBufferPtr ) return eTriNo;
charsDone++;
litPtr++;
ths->fBufferPtr += bytesPerChar;
}
if ( charsDone == charsToGo ) return eTriYes;
ths->fPosition += charsDone;
return eTriMaybe;
} // MatchString
// =================================================================================================
// MatchChar
// =========
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::MatchChar ( PacketMachine * ths, const char * literal )
{
const int bytesPerChar = ths->fBytesPerChar;
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
const char currChar = *ths->fBufferPtr;
if ( currChar != *literal ) return eTriNo;
ths->fBufferPtr += bytesPerChar;
return eTriYes;
} // MatchChar
// =================================================================================================
// MatchOpenQuote
// ==============
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::MatchOpenQuote ( PacketMachine * ths, const char * /* unused */ )
{
const int bytesPerChar = ths->fBytesPerChar;
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
const char currChar = *ths->fBufferPtr;
if ( (currChar != '\'') && (currChar != '"') ) return eTriNo;
ths->fQuoteChar = currChar;
ths->fBufferPtr += bytesPerChar;
return eTriYes;
} // MatchOpenQuote
// =================================================================================================
// MatchCloseQuote
// ===============
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::MatchCloseQuote ( PacketMachine * ths, const char * /* unused */ )
{
return MatchChar ( ths, &ths->fQuoteChar );
} // MatchCloseQuote
// =================================================================================================
// CaptureAttrName
// ===============
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::CaptureAttrName ( PacketMachine * ths, const char * /* unused */ )
{
const int bytesPerChar = ths->fBytesPerChar;
char currChar;
if ( ths->fPosition == 0 ) { // Get the first character in the name.
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
currChar = *ths->fBufferPtr;
if ( ths->fAttrName.size() == 0 ) {
if ( ! ( ( ('a' <= currChar) && (currChar <= 'z') ) ||
( ('A' <= currChar) && (currChar <= 'Z') ) ||
(currChar == '_') || (currChar == ':') ) ) {
return eTriNo;
}
}
ths->fAttrName.erase ( ths->fAttrName.begin(), ths->fAttrName.end() );
#if UseStringPushBack
ths->fAttrName.push_back ( currChar );
#else
ths->fAttrName.insert ( ths->fAttrName.end(), currChar );
#endif
ths->fBufferPtr += bytesPerChar;
}
while ( ths->fBufferPtr < ths->fBufferLimit ) { // Get the remainder of the name.
currChar = *ths->fBufferPtr;
if ( ! ( ( ('a' <= currChar) && (currChar <= 'z') ) ||
( ('A' <= currChar) && (currChar <= 'Z') ) ||
( ('0' <= currChar) && (currChar <= '9') ) ||
(currChar == '-') || (currChar == '.') || (currChar == '_') || (currChar == ':') ) ) {
break;
}
#if UseStringPushBack
ths->fAttrName.push_back ( currChar );
#else
ths->fAttrName.insert ( ths->fAttrName.end(), currChar );
#endif
ths->fBufferPtr += bytesPerChar;
}
if ( ths->fBufferPtr < ths->fBufferLimit ) return eTriYes;
ths->fPosition = (long) ths->fAttrName.size(); // The name might span into the next buffer.
return eTriMaybe;
} // CaptureAttrName
// =================================================================================================
// CaptureAttrValue
// ================
//
// Recognize the equal sign and the quoted string value, capture the value along the way.
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::CaptureAttrValue ( PacketMachine * ths, const char * /* unused */ )
{
const int bytesPerChar = ths->fBytesPerChar;
char currChar = 0;
TriState result = eTriMaybe;
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
switch ( ths->fPosition ) {
case 0 : // The name should haved ended at the '=', nulls already skipped.
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
if ( *ths->fBufferPtr != '=' ) return eTriNo;
ths->fBufferPtr += bytesPerChar;
ths->fPosition = 1;
// fall through OK because MatchOpenQuote will check the buffer limit and nulls ...
// fallthrough
case 1 : // Look for the open quote.
result = MatchOpenQuote ( ths, NULL );
if ( result != eTriYes ) return result;
ths->fPosition = 2;
// fall through OK because the buffer limit and nulls are checked below ...
// fallthrough
default : // Look for the close quote, capturing the value along the way.
assert ( ths->fPosition == 2 );
const char quoteChar = ths->fQuoteChar;
while ( ths->fBufferPtr < ths->fBufferLimit ) {
currChar = *ths->fBufferPtr;
if ( currChar == quoteChar ) break;
#if UseStringPushBack
ths->fAttrValue.push_back ( currChar );
#else
ths->fAttrValue.insert ( ths->fAttrValue.end(), currChar );
#endif
ths->fBufferPtr += bytesPerChar;
}
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
assert ( currChar == quoteChar );
ths->fBufferPtr += bytesPerChar; // Advance past the closing quote.
return eTriYes;
}
} // CaptureAttrValue
// =================================================================================================
// RecordStart
// ===========
//
// Note that this routine looks at bytes, not logical characters. It has to figure out how many
// bytes per character there are so that the other recognizers can skip intervening nulls.
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::RecordStart ( PacketMachine * ths, const char * /* unused */ )
{
while ( true ) {
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
const char currByte = *ths->fBufferPtr;
switch ( ths->fPosition ) {
case 0 : // Record the length.
assert ( ths->fCharForm == eChar8Bit );
assert ( ths->fBytesPerChar == 1 );
ths->fPacketStart = ths->fBufferOffset + ((ths->fBufferPtr - 1) - ths->fBufferOrigin);
ths->fPacketLength = 0;
ths->fPosition = 1;
// ! OK to fall through here, we didn't consume a byte in this step.
// fallthrough
case 1 : // Look for the first null byte.
if ( currByte != 0 ) return eTriYes; // No nulls found.
ths->fCharForm = eChar16BitBig; // Assume 16 bit big endian for now.
ths->fBytesPerChar = 2;
ths->fBufferPtr++;
ths->fPosition = 2;
break; // ! Don't fall through, have to check for the end of the buffer between each byte.
case 2 : // One null was found, look for a second.
if ( currByte != 0 ) return eTriYes; // Just one null found.
ths->fBufferPtr++;
ths->fPosition = 3;
break;
case 3 : // Two nulls were found, look for a third.
if ( currByte != 0 ) return eTriNo; // Just two nulls is not valid.
ths->fCharForm = eChar32BitBig; // Assume 32 bit big endian for now.
ths->fBytesPerChar = 4;
ths->fBufferPtr++;
return eTriYes;
break;
}
}
} // RecordStart
// =================================================================================================
// RecognizeBOM
// ============
//
// Recognizing the byte order marker is a surprisingly messy thing to do. It can't be done by the
// normal string matcher, there are no intervening nulls. There are 4 transitions after the opening
// quote, the closing quote or one of the three encodings. For the actual BOM there are then 1 or 2
// following bytes that depend on which of the encodings we're in. Not to mention that the buffer
// might end at any point.
//
// The intervening null count done earlier determined 8, 16, or 32 bits per character, but not the
// big or little endian nature for the 16/32 bit cases. The BOM must be present for the 16 and 32
// bit cases in order to determine the endian mode. There are six possible byte sequences for the
// quoted BOM string, ignoring the differences for quoting with ''' versus '"'.
//
// Keep in mind that for the 16 and 32 bit cases there will be nulls for the quote. In the table
// below the symbol <quote> means just the one byte containing the ''' or '"'. The nulls for the
// quote character are explicitly shown.
//
// <quote> <quote> - 1: No BOM, this must be an 8 bit case.
// <quote> \xEF \xBB \xBF <quote> - 1.12-13: The 8 bit form.
//
// <quote> \xFE \xFF \x00 <quote> - 1.22-23: The 16 bit, big endian form
// <quote> \x00 \xFF \xFE <quote> - 1.32-33: The 16 bit, little endian form.
//
// <quote> \x00 \x00 \xFE \xFF \x00 \x00 \x00 <quote> - 1.32.43-45.56-57: The 32 bit, big endian form.
// <quote> \x00 \x00 \x00 \xFF \xFE \x00 \x00 <quote> - 1.32.43.54-57: The 32 bit, little endian form.
enum {
eBOM_8_1 = 0xEF,
eBOM_8_2 = 0xBB,
eBOM_8_3 = 0xBF,
eBOM_Big_1 = 0xFE,
eBOM_Big_2 = 0xFF,
eBOM_Little_1 = eBOM_Big_2,
eBOM_Little_2 = eBOM_Big_1
};
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::RecognizeBOM ( PacketMachine * ths, const char * /* unused */ )
{
const int bytesPerChar = ths->fBytesPerChar;
while ( true ) { // Handle one character at a time, the micro-state (fPosition) changes for each.
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
const unsigned char currChar = *ths->fBufferPtr; // ! The BOM bytes look like integers bigger than 127.
switch ( ths->fPosition ) {
case 0 : // Look for the opening quote.
if ( (currChar != '\'') && (currChar != '"') ) return eTriNo;
ths->fQuoteChar = currChar;
ths->fBufferPtr++;
ths->fPosition = 1;
break; // ! Don't fall through, have to check for the end of the buffer between each byte.
case 1 : // Look at the byte immediately following the opening quote.
if ( currChar == ths->fQuoteChar ) { // Closing quote, no BOM character, must be 8 bit.
if ( ths->fCharForm != eChar8Bit ) return eTriNo;
ths->fBufferPtr += bytesPerChar; // Skip the nulls after the closing quote.
return eTriYes;
} else if ( currChar == eBOM_8_1 ) { // Start of the 8 bit form.
if ( ths->fCharForm != eChar8Bit ) return eTriNo;
ths->fBufferPtr++;
ths->fPosition = 12;
} else if ( currChar == eBOM_Big_1 ) { // Start of the 16 bit big endian form.
if ( ths->fCharForm != eChar16BitBig ) return eTriNo;
ths->fBufferPtr++;
ths->fPosition = 22;
} else if ( currChar == 0 ) { // Start of the 16 bit little endian or either 32 bit form.
if ( ths->fCharForm == eChar8Bit ) return eTriNo;
ths->fBufferPtr++;
ths->fPosition = 32;
} else {
return eTriNo;
}
break;
case 12 : // Look for the second byte of the 8 bit form.
if ( currChar != eBOM_8_2 ) return eTriNo;
ths->fPosition = 13;
ths->fBufferPtr++;
break;
case 13 : // Look for the third byte of the 8 bit form.
if ( currChar != eBOM_8_3 ) return eTriNo;
ths->fPosition = 99;
ths->fBufferPtr++;
break;
case 22 : // Look for the second byte of the 16 bit big endian form.
if ( currChar != eBOM_Big_2 ) return eTriNo;
ths->fPosition = 23;
ths->fBufferPtr++;
break;
case 23 : // Look for the null before the closing quote of the 16 bit big endian form.
if ( currChar != 0 ) return eTriNo;
ths->fBufferPtr++;
ths->fPosition = 99;
break;
case 32 : // Look at the second byte of the 16 bit little endian or either 32 bit form.
if ( currChar == eBOM_Little_1 ) {
ths->fPosition = 33;
} else if ( currChar == 0 ) {
ths->fPosition = 43;
} else {
return eTriNo;
}
ths->fBufferPtr++;
break;
case 33 : // Look for the third byte of the 16 bit little endian form.
if ( ths->fCharForm != eChar16BitBig ) return eTriNo; // Null count before assumed big endian.
if ( currChar != eBOM_Little_2 ) return eTriNo;
ths->fCharForm = eChar16BitLittle;
ths->fPosition = 99;
ths->fBufferPtr++;
break;
case 43 : // Look at the third byte of either 32 bit form.
if ( ths->fCharForm != eChar32BitBig ) return eTriNo; // Null count before assumed big endian.
if ( currChar == eBOM_Big_1 ) {
ths->fPosition = 44;
} else if ( currChar == 0 ) {
ths->fPosition = 54;
} else {
return eTriNo;
}
ths->fBufferPtr++;
break;
case 44 : // Look for the fourth byte of the 32 bit big endian form.
if ( currChar != eBOM_Big_2 ) return eTriNo;
ths->fPosition = 45;
ths->fBufferPtr++;
break;
case 45 : // Look for the first null before the closing quote of the 32 bit big endian form.
if ( currChar != 0 ) return eTriNo;
ths->fPosition = 56;
ths->fBufferPtr++;
break;
case 54 : // Look for the fourth byte of the 32 bit little endian form.
ths->fCharForm = eChar32BitLittle;
if ( currChar != eBOM_Little_1 ) return eTriNo;
ths->fPosition = 55;
ths->fBufferPtr++;
break;
case 55 : // Look for the fifth byte of the 32 bit little endian form.
if ( currChar != eBOM_Little_2 ) return eTriNo;
ths->fPosition = 56;
ths->fBufferPtr++;
break;
case 56 : // Look for the next to last null before the closing quote of the 32 bit forms.
if ( currChar != 0 ) return eTriNo;
ths->fPosition = 57;
ths->fBufferPtr++;
break;
case 57 : // Look for the last null before the closing quote of the 32 bit forms.
if ( currChar != 0 ) return eTriNo;
ths->fPosition = 99;
ths->fBufferPtr++;
break;
default : // Look for the closing quote.
assert ( ths->fPosition == 99 );
if ( currChar != ths->fQuoteChar ) return eTriNo;
ths->fBufferPtr += bytesPerChar; // Skip the nulls after the closing quote.
return eTriYes;
break;
}
}
} // RecognizeBOM
// =================================================================================================
// RecordHeadAttr
// ==============
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::RecordHeadAttr ( PacketMachine * ths, const char * /* unused */ )
{
if ( ths->fAttrName == "encoding" ) {
assert ( ths->fEncodingAttr.empty() );
ths->fEncodingAttr = ths->fAttrValue;
} else if ( ths->fAttrName == "bytes" ) {
XMP_Int32 value = 0;
int count = (int) ths->fAttrValue.size();
int i;
assert ( ths->fBytesAttr == -1 );
if ( count > 0 ) { // Allow bytes='' to be the same as no bytes attribute.
for ( i = 0; i < count; i++ ) {
const char currChar = ths->fAttrValue[i];
if ( ('0' <= currChar) && (currChar <= '9') ) {
value = (value * 10) + (currChar - '0');
} else {
ths->fBogusPacket = true;
value = -1;
break;
}
}
ths->fBytesAttr = value;
if ( CharFormIs16Bit ( ths->fCharForm ) ) {
if ( (ths->fBytesAttr & 1) != 0 ) ths->fBogusPacket = true;
} else if ( CharFormIs32Bit ( ths->fCharForm ) ) {
if ( (ths->fBytesAttr & 3) != 0 ) ths->fBogusPacket = true;
}
}
}
ths->fAttrName.erase ( ths->fAttrName.begin(), ths->fAttrName.end() );
ths->fAttrValue.erase ( ths->fAttrValue.begin(), ths->fAttrValue.end() );
return eTriYes;
} // RecordHeadAttr
// =================================================================================================
// CaptureAccess
// =============
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::CaptureAccess ( PacketMachine * ths, const char * /* unused */ )
{
const int bytesPerChar = ths->fBytesPerChar;
while ( true ) {
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
const char currChar = *ths->fBufferPtr;
switch ( ths->fPosition ) {
case 0 : // Look for the opening quote.
if ( (currChar != '\'') && (currChar != '"') ) return eTriNo;
ths->fQuoteChar = currChar;
ths->fBufferPtr += bytesPerChar;
ths->fPosition = 1;
break; // ! Don't fall through, have to check for the end of the buffer between each byte.
case 1 : // Look for the 'r' or 'w'.
if ( (currChar != 'r') && (currChar != 'w') ) return eTriNo;
ths->fAccess = currChar;
ths->fBufferPtr += bytesPerChar;
ths->fPosition = 2;
break;
default : // Look for the closing quote.
assert ( ths->fPosition == 2 );
if ( currChar != ths->fQuoteChar ) return eTriNo;
ths->fBufferPtr += bytesPerChar;
return eTriYes;
break;
}
}
} // CaptureAccess
// =================================================================================================
// RecordTailAttr
// ==============
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::RecordTailAttr ( PacketMachine * ths, const char * /* unused */ )
{
// There are no known "general" attributes for the packet trailer.
ths->fAttrName.erase ( ths->fAttrName.begin(), ths->fAttrName.end() );
ths->fAttrValue.erase ( ths->fAttrValue.begin(), ths->fAttrValue.end() );
return eTriYes;
} // RecordTailAttr
// =================================================================================================
// CheckPacketEnd
// ==============
//
// Check for trailing padding and record the packet length. We have trailing padding if the bytes
// attribute is present and has a value greater than the current length.
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::CheckPacketEnd ( PacketMachine * ths, const char * /* unused */ )
{
const int bytesPerChar = ths->fBytesPerChar;
if ( ths->fPosition == 0 ) { // First call, decide if there is trailing padding.
const XMP_Int64 currLen64 = (ths->fBufferOffset + (ths->fBufferPtr - ths->fBufferOrigin)) - ths->fPacketStart;
if ( currLen64 > 0x7FFFFFFF ) throw std::runtime_error ( "Packet length exceeds 2GB-1" );
const XMP_Int32 currLength = (XMP_Int32)currLen64;
if ( (ths->fBytesAttr != -1) && (ths->fBytesAttr != currLength) ) {
if ( ths->fBytesAttr < currLength ) {
ths->fBogusPacket = true; // The bytes attribute value is too small.
} else {
ths->fPosition = ths->fBytesAttr - currLength;
if ( (ths->fPosition % ths->fBytesPerChar) != 0 ) {
ths->fBogusPacket = true; // The padding is not a multiple of the character size.
ths->fPosition = (ths->fPosition / ths->fBytesPerChar) * ths->fBytesPerChar;
}
}
}
}
while ( ths->fPosition > 0 ) {
if ( ths->fBufferPtr >= ths->fBufferLimit ) return eTriMaybe;
const char currChar = *ths->fBufferPtr;
if ( (currChar != ' ') && (currChar != '\t') && (currChar != '\n') && (currChar != '\r') ) {
ths->fBogusPacket = true; // The padding is not whitespace.
break; // Stop the packet here.
}
ths->fPosition -= bytesPerChar;
ths->fBufferPtr += bytesPerChar;
}
const XMP_Int64 currLen64 = (ths->fBufferOffset + (ths->fBufferPtr - ths->fBufferOrigin)) - ths->fPacketStart;
if ( currLen64 > 0x7FFFFFFF ) throw std::runtime_error ( "Packet length exceeds 2GB-1" );
ths->fPacketLength = (XMP_Int32)currLen64;
return eTriYes;
} // CheckPacketEnd
// =================================================================================================
// CheckFinalNulls
// ===============
//
// Do some special case processing for little endian characters. We have to make sure the presumed
// nulls after the last character actually exist, i.e. that the stream does not end too soon. Note
// that the prior character scanning has moved the buffer pointer to the address following the last
// byte of the last character. I.e. we're already past the presumed nulls, so we can't check their
// content. All we can do is verify that the stream does not end too soon.
//
// Doing this check is simple yet subtle. If we're still in the current buffer then the trailing
// bytes obviously exist. If we're exactly at the end of the buffer then the bytes also exist.
// The only question is when we're actually past this buffer, partly into the next buffer. This is
// when "ths->fBufferPtr > ths->fBufferLimit" on entry. For that case we have to wait until we've
// actually seen enough extra bytes of input.
//
// Since the normal buffer processing is already adjusting for this partial character overrun, all
// that needs to be done here is wait until "ths->fBufferPtr <= ths->fBufferLimit" on entry. In
// other words, if we're presently too far, ths->fBufferPtr will be adjusted by the amount of the
// overflow the next time XMPScanner::Scan is called. This might still be too far, so just keep
// waiting for enough data to pass by.
//
// Note that there is a corresponding special case for big endian characters, we must decrement the
// starting offset by the number of leading nulls. But we don't do that here, we leave it to the
// outer code. This is because the leading nulls might have been at the exact end of a previous
// buffer, in which case we have to also decrement the length of that raw data snip.
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::CheckFinalNulls ( PacketMachine * ths, const char * /* unused */ )
{
if ( (ths->fCharForm != eChar8Bit) && CharFormIsLittleEndian ( ths->fCharForm ) ) {
if ( ths->fBufferPtr > ths->fBufferLimit ) return eTriMaybe;
}
return eTriYes;
} // CheckFinalNulls
// =================================================================================================
// SetNextRecognizer
// =================
void
XMPScanner::PacketMachine::SetNextRecognizer ( RecognizerKind nextRecognizer )
{
fRecognizer = nextRecognizer;
fPosition = 0;
} // SetNextRecognizer
// =================================================================================================
// FindNextPacket
// ==============
// *** When we start validating intervening nulls for 2 and 4 bytes characters, throw an exception
// *** for errors. Don't return eTriNo, that might skip at an optional point.
XMPScanner::PacketMachine::TriState
XMPScanner::PacketMachine::FindNextPacket ()
{
TriState status;
#define kPacketHead "?xpacket begin="
#define kPacketID "W5M0MpCehiHzreSzNTczkc9d"
#define kPacketTail "?xpacket end="
static const RecognizerInfo recognizerTable [eRecognizerCount] = { // ! Would be safer to assign these explicitly.
// proc successNext failureNext literal
{ NULL, eFailureRecognizer, eFailureRecognizer, NULL}, // eFailureRecognizer
{ NULL, eSuccessRecognizer, eSuccessRecognizer, NULL}, // eSuccessRecognizer
{ FindLessThan, eHeadStartRecorder, eFailureRecognizer, "H" }, // eLeadInRecognizer
{ RecordStart, eHeadStartRecognizer, eLeadInRecognizer, NULL }, // eHeadStartRecorder
{ MatchString, eBOMRecognizer, eLeadInRecognizer, kPacketHead }, // eHeadStartRecognizer
{ RecognizeBOM, eIDTagRecognizer, eLeadInRecognizer, NULL }, // eBOMRecognizer
{ MatchString, eIDOpenRecognizer, eLeadInRecognizer, " id=" }, // eIDTagRecognizer
{ MatchOpenQuote, eIDValueRecognizer, eLeadInRecognizer, NULL }, // eIDOpenRecognizer
{ MatchString, eIDCloseRecognizer, eLeadInRecognizer, kPacketID }, // eIDValueRecognizer
{ MatchCloseQuote, eAttrSpaceRecognizer_1, eLeadInRecognizer, NULL }, // eIDCloseRecognizer
{ MatchChar, eAttrNameRecognizer_1, eHeadEndRecognizer, " " }, // eAttrSpaceRecognizer_1
{ CaptureAttrName, eAttrValueRecognizer_1, eLeadInRecognizer, NULL }, // eAttrNameRecognizer_1
{ CaptureAttrValue, eAttrValueRecorder_1, eLeadInRecognizer, NULL }, // eAttrValueRecognizer_1
{ RecordHeadAttr, eAttrSpaceRecognizer_1, eLeadInRecognizer, NULL }, // eAttrValueRecorder_1
{ MatchString, eBodyRecognizer, eLeadInRecognizer, "?>" }, // eHeadEndRecognizer
{ FindLessThan, eTailStartRecognizer, eBodyRecognizer, "T"}, // eBodyRecognizer
{ MatchString, eAccessValueRecognizer, eBodyRecognizer, kPacketTail }, // eTailStartRecognizer
{ CaptureAccess, eAttrSpaceRecognizer_2, eBodyRecognizer, NULL }, // eAccessValueRecognizer
{ MatchChar, eAttrNameRecognizer_2, eTailEndRecognizer, " " }, // eAttrSpaceRecognizer_2
{ CaptureAttrName, eAttrValueRecognizer_2, eBodyRecognizer, NULL }, // eAttrNameRecognizer_2
{ CaptureAttrValue, eAttrValueRecorder_2, eBodyRecognizer, NULL }, // eAttrValueRecognizer_2
{ RecordTailAttr, eAttrSpaceRecognizer_2, eBodyRecognizer, NULL }, // eAttrValueRecorder_2
{ MatchString, ePacketEndRecognizer, eBodyRecognizer, "?>" }, // eTailEndRecognizer
{ CheckPacketEnd, eCloseOutRecognizer, eBodyRecognizer, "" }, // ePacketEndRecognizer
{ CheckFinalNulls, eSuccessRecognizer, eBodyRecognizer, "" } // eCloseOutRecognizer
};
while ( true ) {
switch ( fRecognizer ) {
case eFailureRecognizer :
return eTriNo;
case eSuccessRecognizer :
return eTriYes;
default :
// -------------------------------------------------------------------
// For everything else, the normal cases, use the state machine table.
const RecognizerInfo * thisState = &recognizerTable [fRecognizer];
status = thisState->proc ( this, thisState->literal );
switch ( status ) {
case eTriNo :
SetNextRecognizer ( thisState->failureNext );
continue;
case eTriYes :
SetNextRecognizer ( thisState->successNext );
continue;
case eTriMaybe :
fBufferOverrun = (unsigned char)(fBufferPtr - fBufferLimit);
return eTriMaybe; // Keep this recognizer intact, to be resumed later.
}
} // switch ( fRecognizer ) { ...
} // while ( true ) { ...
} // FindNextPacket
// =================================================================================================
// =================================================================================================
// class InternalSnip
// ==================
// =================================================================================================
// InternalSnip
// ============
XMPScanner::InternalSnip::InternalSnip ( XMP_Int64 offset, XMP_Int64 length )
{
fInfo.fOffset = offset;
fInfo.fLength = length;
} // InternalSnip
// =================================================================================================
// InternalSnip
// ============
XMPScanner::InternalSnip::InternalSnip ( const InternalSnip & rhs ) :
fInfo ( rhs.fInfo ),
fMachine ()
{
assert ( rhs.fMachine.get() == NULL ); // Don't copy a snip with a machine.
assert ( (rhs.fInfo.fEncodingAttr == 0) || (*rhs.fInfo.fEncodingAttr == 0) ); // Don't copy a snip with an encoding.
} // InternalSnip
// =================================================================================================
// ~InternalSnip
// =============
XMPScanner::InternalSnip::~InternalSnip ()
{
} // ~InternalSnip
// =================================================================================================
// =================================================================================================
// class XMPScanner
// ================
// =================================================================================================
// DumpSnipList
// ============
#if DEBUG
static const char * snipStateName [6] = { "not-seen", "pending", "raw-data", "good-packet", "partial", "bad-packet" };
void
XMPScanner::DumpSnipList ( const char * title )
{
InternalSnipIterator currPos = fInternalSnips.begin();
InternalSnipIterator endPos = fInternalSnips.end();
cout << endl << title << " snip list: " << fInternalSnips.size() << endl;
for ( ; currPos != endPos; ++currPos ) {
SnipInfo * currSnip = &currPos->fInfo;
cout << '\t' << currSnip << ' ' << snipStateName[currSnip->fState] << ' '
<< currSnip->fOffset << ".." << (currSnip->fOffset + currSnip->fLength - 1)
<< ' ' << currSnip->fLength << ' ' << endl;
}
} // DumpSnipList
#endif
// =================================================================================================
// PrevSnip and NextSnip
// =====================
XMPScanner::InternalSnipIterator
XMPScanner::PrevSnip ( InternalSnipIterator snipPos )
{
InternalSnipIterator prev = snipPos;
return --prev;
} // PrevSnip
XMPScanner::InternalSnipIterator
XMPScanner::NextSnip ( InternalSnipIterator snipPos )
{
InternalSnipIterator next = snipPos;
return ++next;
} // NextSnip
// =================================================================================================
// XMPScanner
// ==========
//
// Initialize the scanner object with one "not seen" snip covering the whole stream.
XMPScanner::XMPScanner ( XMP_Int64 streamLength ) :
fStreamLength ( streamLength )
{
InternalSnip rootSnip ( 0, streamLength );
if ( streamLength > 0 ) fInternalSnips.push_front ( rootSnip ); // Be nice for empty files.
// DumpSnipList ( "New XMPScanner" );
} // XMPScanner
// =================================================================================================
// ~XMPScanner
// ===========
XMPScanner::~XMPScanner()
{
} // ~XMPScanner
// =================================================================================================
// GetSnipCount
// ============
long
XMPScanner::GetSnipCount ()
{
return (long)fInternalSnips.size();
} // GetSnipCount
// =================================================================================================
// StreamAllScanned
// ================
bool
XMPScanner::StreamAllScanned ()
{
InternalSnipIterator currPos = fInternalSnips.begin();
InternalSnipIterator endPos = fInternalSnips.end();
for ( ; currPos != endPos; ++currPos ) {
if ( currPos->fInfo.fState == eNotSeenSnip ) return false;
}
return true;
} // StreamAllScanned
// =================================================================================================
// SplitInternalSnip
// =================
//
// Split the given snip into up to 3 pieces. The new pieces are inserted before and after this one
// in the snip list. The relOffset is the first byte to be kept, it is relative to this snip. If
// the preceeding or following snips have the same state as this one, just shift the boundaries.
// I.e. move the contents from one snip to the other, don't create a new snip.
// *** To be thread safe we ought to lock the entire list during manipulation. Let data scanning
// *** happen in parallel, serialize all mucking with the list.
void
XMPScanner::SplitInternalSnip ( InternalSnipIterator snipPos, XMP_Int64 relOffset, XMP_Int64 newLength )
{
assert ( (relOffset + newLength) > relOffset ); // Check for overflow.
assert ( (relOffset + newLength) <= snipPos->fInfo.fLength );
// -----------------------------------
// First deal with the low offset end.
if ( relOffset > 0 ) {
InternalSnipIterator prevPos;
if ( snipPos != fInternalSnips.begin() ) prevPos = PrevSnip ( snipPos );
if ( (snipPos != fInternalSnips.begin()) && (snipPos->fInfo.fState == prevPos->fInfo.fState) ) {
prevPos->fInfo.fLength += relOffset; // Adjust the preceeding snip.
} else {
InternalSnip headExcess ( snipPos->fInfo.fOffset, relOffset );
headExcess.fInfo.fState = snipPos->fInfo.fState;
headExcess.fInfo.fOutOfOrder = snipPos->fInfo.fOutOfOrder;
fInternalSnips.insert ( snipPos, headExcess ); // Insert the head piece before the middle piece.
}
snipPos->fInfo.fOffset += relOffset; // Adjust the remainder of this snip.
snipPos->fInfo.fLength -= relOffset;
}
// ----------------------------------
// Now deal with the high offset end.
if ( newLength < snipPos->fInfo.fLength ) {
InternalSnipIterator nextPos = NextSnip ( snipPos );
const XMP_Int64 tailLength = snipPos->fInfo.fLength - newLength;
if ( (nextPos != fInternalSnips.end()) && (snipPos->fInfo.fState == nextPos->fInfo.fState) ) {
nextPos->fInfo.fOffset -= tailLength; // Adjust the following snip.
nextPos->fInfo.fLength += tailLength;
} else {
InternalSnip tailExcess ( (snipPos->fInfo.fOffset + newLength), tailLength );
tailExcess.fInfo.fState = snipPos->fInfo.fState;
tailExcess.fInfo.fOutOfOrder = snipPos->fInfo.fOutOfOrder;
fInternalSnips.insert ( nextPos, tailExcess ); // Insert the tail piece after the middle piece.
}
snipPos->fInfo.fLength = newLength;
}
} // SplitInternalSnip
// =================================================================================================
// MergeInternalSnips
// ==================
XMPScanner::InternalSnipIterator
XMPScanner::MergeInternalSnips ( InternalSnipIterator firstPos, InternalSnipIterator secondPos )
{
firstPos->fInfo.fLength += secondPos->fInfo.fLength;
fInternalSnips.erase ( secondPos );
return firstPos;
} // MergeInternalSnips
// =================================================================================================
// Scan
// ====
void
XMPScanner::Scan ( const void * bufferOrigin, XMP_Int64 bufferOffset, XMP_Int64 bufferLength )
{
XMP_Int64 relOffset;
#if 0
cout << "Scan: @ " << bufferOrigin << ", " << bufferOffset << ", " << bufferLength << endl;
#endif
if ( bufferLength == 0 ) return;
// ----------------------------------------------------------------
// These comparisons are carefully done to avoid overflow problems.
if ( (bufferOffset >= fStreamLength) ||
(bufferLength > (fStreamLength - bufferOffset)) ||
(bufferOrigin == 0) ) {
throw ScanError ( "Bad origin, offset, or length" );
}
// ----------------------------------------------------------------------------------------------
// This buffer must be within a not-seen snip. Find it and split it. The first snip whose whose
// end is beyond the buffer must be the enclosing one.
// *** It would be friendly for rescans for out of order problems to accept any buffer postion.
const XMP_Int64 endOffset = bufferOffset + bufferLength - 1;
InternalSnipIterator snipPos = fInternalSnips.begin();
while ( endOffset > (snipPos->fInfo.fOffset + snipPos->fInfo.fLength - 1) ) ++ snipPos;
if ( snipPos->fInfo.fState != eNotSeenSnip ) throw ScanError ( "Already seen" );
relOffset = bufferOffset - snipPos->fInfo.fOffset;
if ( (relOffset + bufferLength) > snipPos->fInfo.fLength ) throw ScanError ( "Not within existing snip" );
SplitInternalSnip ( snipPos, relOffset, bufferLength ); // *** If sequential & prev is partial, just tack on,
// --------------------------------------------------------
// Merge this snip with the preceeding snip if appropriate.
// *** When out of order I/O is supported we have to do something about buffers who's predecessor is not seen.
if ( snipPos->fInfo.fOffset > 0 ) {
InternalSnipIterator prevPos = PrevSnip ( snipPos );
if ( prevPos->fInfo.fState == ePartialPacketSnip ) snipPos = MergeInternalSnips ( prevPos, snipPos );
}
// ----------------------------------
// Look for packets within this snip.
snipPos->fInfo.fState = ePendingSnip;
PacketMachine* thisMachine = snipPos->fMachine.get();
// DumpSnipList ( "Before scan" );
if ( thisMachine != 0 ) {
thisMachine->AssociateBuffer ( bufferOffset, bufferOrigin, bufferLength );
} else {
// *** snipPos->fMachine.reset ( new PacketMachine ( bufferOffset, bufferOrigin, bufferLength ) ); VC++ lacks reset
#if 0
snipPos->fMachine = unique_ptr<PacketMachine> ( new PacketMachine ( bufferOffset, bufferOrigin, bufferLength ) );
#else
{
// Some versions of gcc complain about the assignment operator above. This avoids the gcc bug.
PacketMachine * pm = new PacketMachine ( bufferOffset, bufferOrigin, bufferLength );
unique_ptr<PacketMachine> ap ( pm );
snipPos->fMachine = std::move(ap);
}
#endif
thisMachine = snipPos->fMachine.get();
}
bool bufferDone = false;
while ( ! bufferDone ) {
PacketMachine::TriState foundPacket = thisMachine->FindNextPacket();
if ( foundPacket == PacketMachine::eTriNo ) {
// -----------------------------------------------------------------------
// No packet, mark the snip as raw data and get rid of the packet machine.
// We're done with this buffer.
snipPos->fInfo.fState = eRawInputSnip;
#if 0
snipPos->fMachine = unique_ptr<PacketMachine>(); // *** snipPos->fMachine.reset(); VC++ lacks reset
#else
{
// Some versions of gcc complain about the assignment operator above. This avoids the gcc bug.
unique_ptr<PacketMachine> ap;
snipPos->fMachine = std::move(ap);
}
#endif
bufferDone = true;
} else {
// ---------------------------------------------------------------------------------------------
// Either a full or partial packet. First trim any excess off of the front as a raw input snip.
// If this is a partial packet mark the snip and keep the packet machine to be resumed later.
// We're done with this buffer, the partial packet by definition extends to the end. If this is
// a complete packet first extract the additional information from the packet machine. If there
// is leftover data split the snip and transfer the packet machine to the new trailing snip.
if ( thisMachine->fPacketStart > snipPos->fInfo.fOffset ) {
// There is data at the front of the current snip that must be trimmed.
SnipState savedState = snipPos->fInfo.fState;
snipPos->fInfo.fState = eRawInputSnip; // ! So it gets propagated to the trimmed front part.
relOffset = thisMachine->fPacketStart - snipPos->fInfo.fOffset;
SplitInternalSnip ( snipPos, relOffset, (snipPos->fInfo.fLength - relOffset) );
snipPos->fInfo.fState = savedState;
}
if ( foundPacket == PacketMachine::eTriMaybe ) {
// We have only found a partial packet.
snipPos->fInfo.fState = ePartialPacketSnip;
bufferDone = true;
} else {
// We have found a complete packet. Extract all the info for it and split any trailing data.
InternalSnipIterator packetSnip = snipPos;
SnipState packetState = eValidPacketSnip;
if ( thisMachine->fBogusPacket ) packetState = eBadPacketSnip;
packetSnip->fInfo.fAccess = thisMachine->fAccess;
packetSnip->fInfo.fCharForm = thisMachine->fCharForm;
packetSnip->fInfo.fBytesAttr = thisMachine->fBytesAttr;
packetSnip->fInfo.fEncodingAttr = thisMachine->fEncodingAttr.c_str();
thisMachine->fEncodingAttr.erase ( thisMachine->fEncodingAttr.begin(), thisMachine->fEncodingAttr.end() );
if ( (thisMachine->fCharForm != eChar8Bit) && CharFormIsBigEndian ( thisMachine->fCharForm ) ) {
// ------------------------------------------------------------------------------
// Handle a special case for big endian characters. The packet machine works as
// though things were little endian. The packet starting offset points to the
// byte containing the opening '<', and the length includes presumed nulls that
// follow the last "real" byte. If the characters are big endian we now have to
// decrement the starting offset of the packet, and also decrement the length of
// the previous snip.
//
// Note that we can't do this before the head trimming above in general. The
// nulls might have been exactly at the end of a buffer and already in the
// previous snip. We are doing this before trimming the tail from the raw snip
// containing the packet. We adjust the raw snip's size because it ends with
// the input buffer. We don't adjust the packet's size, it is already correct.
//
// The raw snip (the one before the packet) might entirely disappear. A simple
// example of this is when the packet is at the start of the file.
assert ( packetSnip != fInternalSnips.begin() ); // Leading nulls were trimmed!
if ( packetSnip != fInternalSnips.begin() ) { // ... but let's program defensibly.
InternalSnipIterator prevSnip = PrevSnip ( packetSnip );
const unsigned int nullsToAdd = ( CharFormIs16Bit ( thisMachine->fCharForm ) ? 1 : 3 );
assert ( nullsToAdd <= prevSnip->fInfo.fLength );
prevSnip->fInfo.fLength -= nullsToAdd;
if ( prevSnip->fInfo.fLength == 0 ) (void) fInternalSnips.erase ( prevSnip );
packetSnip->fInfo.fOffset -= nullsToAdd;
packetSnip->fInfo.fLength += nullsToAdd;
thisMachine->fPacketStart -= nullsToAdd;
}
}
if ( thisMachine->fPacketLength == snipPos->fInfo.fLength ) {
// This packet ends exactly at the end of the current snip.
#if 0
snipPos->fMachine = unique_ptr<PacketMachine>(); // *** snipPos->fMachine.reset(); VC++ lacks reset
#else
{
// Some versions of gcc complain about the assignment operator above. This avoids the gcc bug.
unique_ptr<PacketMachine> ap;
snipPos->fMachine = std::move(ap);
}
#endif
bufferDone = true;
} else {
// There is trailing data to split from the just found packet.
SplitInternalSnip ( snipPos, 0, thisMachine->fPacketLength );
InternalSnipIterator tailPos = NextSnip ( snipPos );
tailPos->fMachine = std::move(snipPos->fMachine); // unique_ptr assignment - taking ownership
thisMachine->ResetMachine ();
snipPos = tailPos;
}
packetSnip->fInfo.fState = packetState; // Do this last to avoid messing up the tail split.
// DumpSnipList ( "Found a packet" );
}
}
}
// --------------------------------------------------------
// Merge this snip with the preceeding snip if appropriate.
// *** When out of order I/O is supported we have to check the following snip too.
if ( (snipPos->fInfo.fOffset > 0) && (snipPos->fInfo.fState == eRawInputSnip) ) {
InternalSnipIterator prevPos = PrevSnip ( snipPos );
if ( prevPos->fInfo.fState == eRawInputSnip ) snipPos = MergeInternalSnips ( prevPos, snipPos );
}
// DumpSnipList ( "After scan" );
} // Scan
// =================================================================================================
// Report
// ======
void
XMPScanner::Report ( SnipInfoVector& snips )
{
const int count = (int)fInternalSnips.size();
InternalSnipIterator snipPos = fInternalSnips.begin();
int s;
// DumpSnipList ( "Report" );
snips.erase ( snips.begin(), snips.end() ); // ! Should use snips.clear, but VC++ doesn't have it.
snips.reserve ( count );
for ( s = 0; s < count; s += 1 ) {
snips.push_back ( SnipInfo ( snipPos->fInfo.fState, snipPos->fInfo.fOffset, snipPos->fInfo.fLength ) );
snips[s] = snipPos->fInfo; // Pick up all of the fields.
++ snipPos;
}
} // Report
// =================================================================================================
#endif // EnablePacketScanning
|