1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
#include <exiv2/exiv2.hpp>
#include <stdint.h>
#include "slice.hpp"
#include "types.hpp"
#include "gtestwrapper.h"
using namespace Exiv2;
template <typename T>
class slice;
/*!
* This namespace contains the helper-function get_test_data. It is intented
* to be used for test with the slice fixture: it returns the appropriate
* data to the constructor of slice. For (const) T==std::vector it returns the
* fixtures meber vec_, for (const) T==int* it returns vec_.data()
*
* Due to C++98's limitations, this requires a separate traits class, that
* specifies the return type *and* a specialization of get_test_data for each
* case (maybe some can be reduced with SFINAE, but that ain't improving
* readability either).
*
* Unfortunately, C++11 will probably only make the return_type_traits go away,
* but not the template specializations of get_test_data (for that we need
* C++17, so see you in 2025).
*/
namespace cpp_98_boilerplate
{
template <typename T>
struct return_type_traits
{
typedef T type;
};
template <typename U>
struct return_type_traits<std::vector<U> >
{
typedef typename std::vector<U>& type;
};
template <typename U>
struct return_type_traits<const std::vector<U> >
{
typedef const typename std::vector<U>& type;
};
template <typename T>
typename return_type_traits<T>::type get_test_data(slice<T>& st);
} // namespace cpp_98_boilerplate
/*!
* Fixture for slice testing. Has one public vector of ints with size vec_size
* that is filled with the numbers from 0 to vec_size - 1.
*
* The vector vec_ is used to construct slices either from a std::vector, or
* from raw C-arrays. Which type is used, is set by the template parameter
* T. Thus we guarantee, that the interface is completely independent of the
* underlying datatype.
*
* @tparam T Type that is used to construct a slice for testing.
*/
template <typename T>
class slice : public ::testing::Test
{
public:
static const size_t vec_size = 10;
virtual void SetUp()
{
vec_.reserve(vec_size);
for (unsigned int i = 0; i < vec_size; ++i) {
vec_.push_back(i);
}
}
Slice<T> getTestSlice(size_t begin = 1, size_t end = vec_size - 1)
{
return Slice<T>(cpp_98_boilerplate::get_test_data<T>(*this), begin, end);
}
// TODO: once we have C++11: use initializer list
std::vector<int> vec_;
};
// specializations of get_test_data are provided here, since they must have the
// full definition of slice available
namespace cpp_98_boilerplate
{
template <>
int* get_test_data<int*>(slice<int*>& st)
{
return st.vec_.data();
}
template <>
const int* get_test_data<const int*>(slice<const int*>& st)
{
return st.vec_.data();
}
template <>
std::vector<int>& get_test_data<std::vector<int> >(slice<std::vector<int> >& st)
{
return st.vec_;
}
template <>
const std::vector<int>& get_test_data<const std::vector<int> >(slice<const std::vector<int> >& st)
{
return st.vec_;
}
} // namespace cpp_98_boilerplate
/*!
* Fixture to run test for mutable slices.
*
* It adds nothing new, it is just a separate class, so that we can run
* different tests on it.
*/
template <typename T>
class mutableSlice : public slice<T>
{
};
TYPED_TEST_CASE_P(slice);
TYPED_TEST_CASE_P(mutableSlice);
TYPED_TEST_P(slice, atAccess)
{
// typedef Slice<TypeParam> slice_t;
// const size_t begin = 1;
// const size_t end = this->vec_.size() - 1;
Slice<TypeParam> sl = this->getTestSlice();
ASSERT_EQ(this->vec_.size() - 2, sl.size());
for (unsigned int i = 0; i < sl.size(); ++i) {
ASSERT_EQ(this->vec_.at(i + 1), sl.at(i));
}
}
// TODO C++11: test range based for loop
TYPED_TEST_P(slice, iteratorAccess)
{
Slice<TypeParam> sl = this->getTestSlice();
std::vector<int>::const_iterator vec_it = this->vec_.begin() + 1;
for (typename Slice<TypeParam>::const_iterator it = sl.cbegin(); it < sl.cend(); ++it, ++vec_it) {
ASSERT_EQ(*it, *vec_it);
}
ASSERT_THROW(sl.at(sl.size()), std::out_of_range);
}
TYPED_TEST_P(slice, constructionFailsFromInvalidRange)
{
// start > end
ASSERT_THROW(this->getTestSlice(2, 1), std::out_of_range);
}
TYPED_TEST_P(slice, constructionFailsWithZeroLength)
{
ASSERT_THROW(this->getTestSlice(1, 1), std::out_of_range);
}
/*!
* Test the construction of subSlices and their behavior.
*/
TYPED_TEST_P(slice, subSliceSuccessfulConstruction)
{
typedef Slice<TypeParam> slice_t;
// 0 1 2 3 4 5 6 7 8 9
// | | center_vals
// | | middle
slice_t center_vals = this->getTestSlice(3, 7);
ASSERT_EQ(center_vals.size(), static_cast<size_t>(4));
ASSERT_NO_THROW(center_vals.subSlice(1, 3));
ASSERT_NO_THROW(center_vals.subSlice(1, center_vals.size()));
}
TYPED_TEST_P(slice, subSliceFunctions)
{
Slice<TypeParam> middle = this->getTestSlice(3, 7).subSlice(1, 3);
ASSERT_EQ(middle.size(), static_cast<size_t>(2));
ASSERT_EQ(middle.at(1), static_cast<typename Slice<TypeParam>::value_type>(5));
}
TYPED_TEST_P(slice, subSliceFailedConstruction)
{
// 0 1 2 3 4 5 6 7 8 9
// | | middle
Slice<TypeParam> middle = this->getTestSlice(4, 6);
ASSERT_THROW(middle.subSlice(1, 5), std::out_of_range);
ASSERT_THROW(middle.subSlice(2, 1), std::out_of_range);
ASSERT_THROW(middle.subSlice(2, 2), std::out_of_range);
}
/*! try to cause integer overflows in a sub-optimal implementation */
TYPED_TEST_P(slice, subSliceConstructionOverflowResistance)
{
Slice<TypeParam> center_vals = this->getTestSlice(3, 7);
ASSERT_THROW(center_vals.subSlice(std::numeric_limits<size_t>::max() - 2, 3), std::out_of_range);
ASSERT_THROW(center_vals.subSlice(2, std::numeric_limits<size_t>::max() - 1), std::out_of_range);
}
/*!
* This function's purpose is only to check whether we can pass all slices by
* constant reference.
*/
template <typename T>
void checkConstSliceValueAt(const Slice<T>& sl, typename Slice<T>::value_type value, size_t index)
{
ASSERT_EQ(sl.at(index), value);
}
/*!
* Check that the contents of the slice are ascending via an iterator based for
* loop.
*/
template <typename T>
void checkConstSliceIterator(const Slice<T>& sl, typename Slice<T>::value_type first_value)
{
for (typename Slice<T>::const_iterator it = sl.cbegin(); it < sl.cend(); ++it) {
ASSERT_EQ(*it, first_value++);
}
}
template <typename T>
void checkSubSlice(const Slice<T>& sl)
{
ASSERT_EQ(sl.at(1), sl.subSlice(1, sl.size()).at(0));
}
/*!
* Test that all slices can be also passed as const references and still work
*/
TYPED_TEST_P(slice, constMethodsPreserveConst)
{
typedef Slice<TypeParam> slice_t;
// 0 1 2 3 4 5 6 7 8 9
// | | center_vals
slice_t center_vals = this->getTestSlice(3, 7);
// check at() const works
checkConstSliceValueAt(center_vals, 4, 1);
checkConstSliceIterator(center_vals, 3);
checkSubSlice(center_vals);
}
/*!
* Test the non-const iterators
*/
TYPED_TEST_P(mutableSlice, iterators)
{
typedef Slice<TypeParam> slice_t;
slice_t sl = this->getTestSlice();
ASSERT_EQ(*sl.begin(), static_cast<typename slice_t::value_type>(1));
ASSERT_EQ(*sl.end(), static_cast<typename slice_t::value_type>(this->vec_size - 1));
for (typename slice_t::iterator it = sl.begin(); it < sl.end(); ++it) {
*it = 2 * (*it);
}
ASSERT_EQ(this->vec_.at(0), 0);
for (size_t j = 1; j < this->vec_size - 1; ++j) {
ASSERT_EQ(this->vec_.at(j), static_cast<typename slice_t::value_type>(2 * j));
ASSERT_EQ(this->vec_.at(j), sl.at(j - 1));
}
ASSERT_EQ(this->vec_.at(this->vec_size - 1), static_cast<typename slice_t::value_type>(this->vec_size - 1));
}
/*!
* Test the non-const version of at()
*/
TYPED_TEST_P(mutableSlice, at)
{
typedef Slice<TypeParam> slice_t;
slice_t sl = this->getTestSlice(2, 4);
sl.at(0) = 6;
sl.at(1) = 12;
ASSERT_EQ(this->vec_.at(2), 6);
ASSERT_EQ(this->vec_.at(3), 12);
for (size_t j = 0; j < this->vec_size - 1; ++j) {
if (j == 2 || j == 3) {
continue;
}
ASSERT_EQ(this->vec_.at(j), static_cast<typename slice_t::value_type>(j));
}
}
TEST(pointerSlice, failedConstructionFromNullpointer)
{
ASSERT_THROW(Slice<long*>(NULL, 1, 2), std::invalid_argument);
}
/*!
* Test the construction of an invalid slices from a container (so that a proper
* range check can be conducted)
*/
TEST(containerSlice, failedConstructionFromContainer)
{
std::vector<int> tmp(10);
// slice end too large
ASSERT_THROW(Slice<std::vector<int> >(tmp, 1, tmp.size() + 1), std::out_of_range);
}
/*!
* Test all functions from the makeSlice* family.
*/
TEST(containerSlice, makeSlice)
{
std::string str = "this is a sentence";
Slice<std::string> is = makeSlice(str, 5, 7);
ASSERT_TRUE(std::equal(is.begin(), is.end(), "is"));
Slice<std::string> sl_this = makeSliceUntil(str, 4);
ASSERT_TRUE(std::equal(sl_this.begin(), sl_this.end(), "this"));
Slice<std::string> sl_sentence = makeSliceFrom(str, 10);
ASSERT_TRUE(std::equal(sl_sentence.begin(), sl_sentence.end(), "sentence"));
Slice<std::string> sl_full = makeSlice(str);
ASSERT_TRUE(std::equal(sl_full.begin(), sl_full.end(), str.c_str()));
}
struct stringSlice : public ::testing::Test
{
std::string sentence;
virtual void SetUp()
{
sentence = "this is a sentence";
}
};
TEST_F(stringSlice, at)
{
const Slice<const std::string> is_a = makeSlice(static_cast<const std::string&>(this->sentence), 5, 10);
ASSERT_EQ(is_a.at(0), 'i');
ASSERT_EQ(is_a.at(4), ' ');
}
TEST_F(stringSlice, atFailure)
{
const Slice<const std::string> is_a = makeSlice(static_cast<const std::string&>(this->sentence), 5, 10);
ASSERT_THROW(is_a.at(5), std::out_of_range);
}
TEST_F(stringSlice, size)
{
const Slice<const std::string> is_a = makeSlice(static_cast<const std::string&>(this->sentence), 5, 10);
ASSERT_EQ(is_a.size(), static_cast<size_t>(5));
}
TEST_F(stringSlice, mutateString)
{
Slice<std::string> is_a_mutable = makeSlice(this->sentence, 5, 10);
for (Slice<std::string>::iterator it = is_a_mutable.begin(); it < is_a_mutable.end(); ++it) {
*it = ' ';
}
ASSERT_STREQ(this->sentence.c_str(), "this sentence");
}
template <typename T>
struct dataBufSlice : public ::testing::Test
{
static byte data[4]; // = {0xde, 0xad, 0xbe, 0xef};
DataBuf buf;
virtual void SetUp()
{
buf = DataBuf(data, sizeof(data));
}
};
template <typename T>
byte dataBufSlice<T>::data[4] = {0xde, 0xad, 0xbe, 0xef};
TYPED_TEST_CASE_P(dataBufSlice);
TYPED_TEST_P(dataBufSlice, successfulConstruction)
{
// just check that makeSlice appears to work
ASSERT_EQ(makeSlice(static_cast<TypeParam>(this->buf), 1, 3).size(), static_cast<size_t>(2));
}
TYPED_TEST_P(dataBufSlice, failedConstruction)
{
// check that we get an exception when end is larger than LONG_MAX
ASSERT_THROW(
makeSlice(static_cast<TypeParam>(this->buf), 1, static_cast<size_t>(std::numeric_limits<long>::max()) + 1),
std::invalid_argument);
// check that we get an exception when end is larger than the DataBuf
ASSERT_THROW(makeSlice(static_cast<TypeParam>(this->buf), 1, 5), std::out_of_range);
}
//
// GTest boilerplate to get the tests running for all the different types
//
REGISTER_TYPED_TEST_CASE_P(slice, atAccess, iteratorAccess, constructionFailsFromInvalidRange,
constructionFailsWithZeroLength, subSliceSuccessfulConstruction, subSliceFunctions,
subSliceFailedConstruction, subSliceConstructionOverflowResistance,
constMethodsPreserveConst);
typedef ::testing::Types<const std::vector<int>, std::vector<int>, int*, const int*> test_types_t;
INSTANTIATE_TYPED_TEST_CASE_P(slice, slice, test_types_t);
REGISTER_TYPED_TEST_CASE_P(mutableSlice, iterators, at);
typedef ::testing::Types<std::vector<int>, int*> mut_test_types_t;
INSTANTIATE_TYPED_TEST_CASE_P(slice, mutableSlice, mut_test_types_t);
REGISTER_TYPED_TEST_CASE_P(dataBufSlice, successfulConstruction, failedConstruction);
typedef ::testing::Types<DataBuf&, const DataBuf&> data_buf_types_t;
INSTANTIATE_TYPED_TEST_CASE_P(slice, dataBufSlice, data_buf_types_t);
|