File: eyes.c

package info (click to toggle)
expeyes 5.3.3%2Brepack-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 43,480 kB
  • sloc: python: 36,039; ansic: 9,754; xml: 1,010; makefile: 784; sh: 581; asm: 202; javascript: 46; php: 1
file content (1651 lines) | stat: -rw-r--r-- 47,301 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
/*  
EYES for Young Engineers & Scientists (EYES  1.0)
Program : eyes.c, running on AtMega32 micro-controller
Listens on the RS232 port for commands fom the PC, by eyes.py, and acts accordingly.
Author  : Ajith Kumar B.P, ( bpajith at gmail.com )
License : GNU GPL version 3
First Edit on 1-Sep-2010
Last Edit 23-Dec-2010 : added CAPTURE_M32
Last Edit 27-Jan-2011 : added ECHO
Last Edit 13-Oct-2011 : added IRSEND
*/

#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>

#define	GROUPSIZE	40	// Up to 40 commands in each group

// commands without any arguments (1 to 40)
#define GETVERSION	1	// Get the Eyes firmware version
#define DIGIN		2	// Digital Input (4 bits)
#define USOUND		3	// Send a pulse on OD1 and look for echo on ID2

// Commands with One byte argument (41 to 80) 
#define SETSAMTIME	41	// MCP3208 sampling duration
#define SETADCSIZE	42	// ADC data size (1 or 2)
#define READADC		43	// Read the specified ADC channel
#define R2FTIME		44	// Rise to Fall of signal on input pins
#define R2RTIME		45	// Rise to Fall of signal on input pins
#define F2RTIME		46	// Fall to Rise of signal on input pins
#define F2FTIME		47	// Fall to Rise of signal on input pins
#define SET2RTIME	48	// Setting of bit to rising edge
#define SET2FTIME	49	// to falling time
#define CLR2RTIME	50	// Setting of bit to rising edge
#define CLR2FTIME	51	// to falling time
#define PULSE2RTIME	52	// Pulse to rising edge
#define PULSE2FTIME	53	// Pulse to rising edge
#define SETPULSEWID	54	// width for PULSE2 functions (0 to 250)
#define SETPULSEPOL	55	// PULSE polarity (0 for HIGH true)
#define	DIGOUT 		56	// Digital output (4 bits)
#define ADC2CMP		57	// Route ADC input to ACOMP-
#define SETPWM		58	// Set 488 Hz PWM wave on TC0
#define SETPWMDAC	59	// Set 31.25 kHz PWM wave on TC0
#define GETPORT		60	// PINX data from port X
#define IRSEND		61  // IR transmission using SQR1 output

// Commands with Two bytes argument (81 to 120)
#define	SETPWM0		81	// PWM on on OSC0
#define	SETCOUNTER0	82	// Square wave on OSC2
#define	SETCOUNTER2	83	// Square wave on OSC2
#define	SETACTION	84	// Capture Actions of SET/CLR/PULSE & WAIT type
#define MULTIR2R	85	// Rising edge to a rising edge after N cycles
#define ADCTRIGS	86	// Trigger levels for read_block functions
#define SETWAVEFORM	87	// ISR Wavegen. OCR0 and which DAC from the caller
#define PULSE_D0D1	88	// Interrupt driven square wave on D0 and D1
#define SETDDR		90	// DDRX = dirmask (arg1 = X, arg2 = mask)
#define SETPORT		91	// PORTX = DATA (arg1 = X, arg2 = DATA)

// Commands with Three bytes argument (121 to 160)
#define SETDAC		121	// Serial DAC: send ch, dlo & dhi
#define	QCAPTURE01	122	// 2 bytes N, 1 byte dt. captures channel 0 and 1
#define WREEPROM	123	// Write EEPROM , 2 byte addr & 1 byte data
#define RDEEPROM	124	// Read EEPROM , 2 byte addr , 1 byte number of bytes 

// Commands with Four bytes argument (161 to 200)
#define	CAPTURE01	161	// 2 bytes N, 2 bytes dt. Capture channel 0 and 1
#define	QCAPTURE	162	// Ch, 2 byte N, 1 byte dt. 

// Commands with Five bytes argument (201 to 220)
#define	CAPTURE		201		// Ch, 2 byte N, 2 byte dt. Capture single channel MCP3208
#define CAPTURE_M32	202     // Ch, 2 byte N, 2 byte dt. Capture from, uC internal ADC

// Reply from ATmega8 to the PC
#define DONE		'D'	// Command executed successfully
#define	INVCMD		'C'	// Invalid Command
#define INVARG		'A'	// Invalid input data
#define INVBUFSIZE	'B'	// Resulting data exceeds buffersize
#define TIMEOUT		'T'	// Time measurement timed out

#define TRUE	1
#define FALSE	0
#define TIMERSIZE	50000	// count for 50 ms before clearing
#define TIMEOUTVAL	40		// 50 ms x 40 = 2 seconds
#define MAXTG		1000	// Maximum timegap for CAPTURE, usec
#define MAXTGQ		100		// Same for qcapture
#define MINTG		20		// Minimum timegap for CAPTURE, usec
#define MINTGQ		10		// Same for qcapture
#define	DEADTIME	5		// for PULSE2 calls

typedef uint16_t  u16;
typedef uint8_t  u8, *u8ptr;
typedef u8 boolean;

const char version[] PROGMEM = "ey1.0";


u16 tmp16;					// Gloabal temporary variable

#define	BUFSIZE		1800		// 1800 for atmega32
//----------------------- Global variables -----------------------------
u8 	dbuffer[2 + BUFSIZE];	// status + adc_size info + Databytes
u16 buf_index;
u8  adc_size = 1;
u8	sampling_time = 200;
u8	HTM;					// third byte of timer
u8 	pulse_width = 13;		// Used by PULSE2*time functions
u8	pulse_pol = 0;
u8	action;					// SET/CLR/PULSE and WAIT actions
u8	actionmask;				// Digital I/O bits for action
u8	triglo = 125;			// Trigger around the ADC mid range
u8	trighi = 131;


// -------------------------- Serial ADC & DAC -------------------------
#define   SPICTL	PORTD			// CK=PD2, ADCS = PD3, DACS = PD4
#define   CLK 		(1 << PD2)
#define   ADCS 		(1 << PD3)
#define   DACS 		(1 << PD4)
#define	  ADCKLO	DACS			// ADCS and CLK low
#define	  ADCKHI	DACS+CLK		// ADCS low and Clock hi
#define   CSHI		DACS+ADCS+CLK	// Both CS and Clock hi
#define	  DACKLO	ADCS			// DACS and CLK low
#define	  DACKHI	ADCS+CLK		// DACS low and Clock hi
#define   SPIWR		PORTB
#define   SPIRD	    PINB
#define	  OUTHI		2+1				// PB1 HI and pullup of PB0
#define	  OUTLO		1				// PB1 LO pullup of PB0

u8  hi;		// hi MUST be global to meet timing !!!. Need some assembly code ??
u8 lo;

//---------------------Capture using ATmega32 Internal ADC. Having some trouble !!! -------------------
void capture_m32(u8 ch, u16 np, u16 timegap)  // sqr1 = ch7, sqr2 = ch6, SENSOR = ch5
{
	ADCSRA = (1 << ADEN)  | (1<<ADSC) | 1;	// start a dummy conversion
    if(timegap < 20) lo = (1<<ADEN) | (1<<ADSC) | 1;
    else if(timegap < 40) lo = (1<<ADEN) | (1<<ADSC) | 2;
    else if(timegap < 80) lo = (1<<ADEN) | (1<<ADSC) | 3;
    else if(timegap < 160)lo = (1<<ADEN) | (1<<ADSC) | 4;
    else if(timegap < 320)lo = (1<<ADEN) | (1<<ADSC) | 5;
    else lo = (1<<ADEN) | (1<<ADSC) | 6;
	
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
      
    ADMUX = (1<<REFS0) |(1 << ADLAR) | ch; // MUX
    timegap -= 1;
	PORTC |= 128;
    while ( !(ADCSRA & (1<<ADIF)) ) ;	// wait for ADC conversion
    ADCSRA |= ADIF;						// reset ADC flag

    for(tmp16=0; tmp16 < np; ++tmp16)	// Sample in timed loop
       {
	   TCNT1 = 0;
       ADCSRA = lo;
       while ( !(ADCSRA & (1<<ADIF)) ) ;	// wait for ADC conversion
       dbuffer[buf_index++] = ADCH;
       ADCSRA |= ADIF;						// reset ADC flag
	   while(TCNT1L < timegap) ;			// Wait on counter
       }
    ADCSRA = 0;								// Disable ADC 	
	PORTC &= 127;
}

//------------------------------ Reading External ADC MCP3208 -------------------------------
void qcapture_min(u8 ch, u16 np, u8 timer)	// only for 10 microseconds spacing
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2
	timer -= 2;					// 2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1L = 0;
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = d2;			// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = d1;			// Channel # D1
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = d0;			// Channel # D0
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = CSHI;
		while(TCNT1L < timer) ;		// Wait on counter
		dbuffer[buf_index++] = hi;	// store data
		}
	PORTC &= 127;
}

void qcapture(u8 ch, u16 np, u8 timer)
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2
	timer -= 2;					// 2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1L = 0;
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = d2;			// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = d1;			// Channel # D1
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = d0;			// Channel # D0
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = CSHI;
		//asm("nop");
		while(TCNT1L < timer) ;		// Wait on counter
		asm("nop"); asm("nop"); asm("nop");
		dbuffer[buf_index++] = hi;	// store data
		}
	PORTC &= 127;
}

void qcapture01(u16 np, u8 timer)	// CH0 & CH1, only for 10 microseconds spacing
{
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	timer = timer*2 -2;		// 2 channels, 2 usec forloop overhead
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1L = 0;
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = OUTLO;			// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

				// D1 also is LO
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

				//	D0 is also LO
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
		SPICTL = CSHI;
		dbuffer[buf_index++] = hi;	// store data

		// Read Channel #1 now
		SPIWR = OUTHI;		// start bit
		SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI;  
				// DATA remains HI, for SGL mode
		SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;
	
		SPIWR = OUTLO;		// Channel # D2
		SPICTL = ADCKLO;  	// 3rd clock
		SPICTL = ADCKHI;

				//	D1 is also LO
		SPICTL = ADCKLO; 	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = OUTHI;		// D0 is HI
		SPICTL = ADCKLO;	// 5th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

		SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
		SPICTL = ADCKHI; 						// sampling end
		SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  

		SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		while(TCNT1L < timer) ;		// Wait on counter
		dbuffer[buf_index++] = hi;	// store data
		asm("nop"); asm("nop");
		}
	PORTC &= 127;
}



void capture(u8 ch, u16 np, u16 timer)
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2
	timer -= 2;					// 2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1 = 0;
		SPIWR = OUTHI;						// start bit
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI; SPICTL = ADCKHI;
								// DATA remains HI, for SGL mode
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;

		SPIWR = d2;							//channel bit D2
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = d1;							//channel bit D1
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = d0;							//channel bit D0
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 5th clock

		//SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKLO; SPICTL = ADCKLO;;  // 6th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		//SPICTL = ADCKHI;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  SPICTL = ADCKHI;
		
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
		SPICTL = ADCKHI;
		lo = (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		if(adc_size > 1) 
			dbuffer[buf_index++] = lo << 4;
		dbuffer[buf_index++] = hi;

	    while(TCNT1 < timer) ;			// Wait on TCNT1	
		asm("nop");	asm("nop");	asm("nop");
		//asm("nop");	asm("nop");	asm("nop");
	    }
	PORTC &= 127;
}

void capture01(u16 np, u16 timer)
{
	timer = timer*2-2;				// 2 reads,2 usec forloop overhead
	TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz
	PORTC |= 128;

	for(tmp16=0; tmp16 < np; ++tmp16)
		{
		TCNT1 = 0;
		SPIWR = OUTHI;						// start bit
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI; SPICTL = ADCKHI;
								// DATA remains HI, for SGL mode
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;						//channel bit D2
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;							//channel bit D1
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;							//channel bit D0
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 5th clock

		//SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKLO; SPICTL = ADCKLO;;  // 6th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		//SPICTL = ADCKHI;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  SPICTL = ADCKHI;
		
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
		SPICTL = ADCKHI;
		lo = (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		if(adc_size > 1) 
			dbuffer[buf_index++] = lo << 4;
		dbuffer[buf_index++] = hi;
		
		// Read Channel #1
		SPIWR = OUTHI;						// start bit
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
		SPICTL = ADCKHI; SPICTL = ADCKHI;
								// DATA remains HI, for SGL mode
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 2nd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;						//channel bit D2
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
		SPICTL = ADCKHI;

		SPIWR = OUTLO;							//channel bit D1
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
		SPICTL = ADCKHI;

		SPIWR = OUTHI;							//channel bit D0
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 5th clock

		//SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKLO; SPICTL = ADCKLO;;  // 6th clock
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		SPICTL = ADCKHI; SPICTL = ADCKHI;
		//SPICTL = ADCKHI;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
		SPICTL = ADCKHI;  SPICTL = ADCKHI;
		
		SPICTL = ADCKLO;SPICTL = ADCKLO;	// 8th clock, B11
		SPICTL = ADCKHI;
		hi = SPIRD & 1;

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
 
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
		SPICTL = ADCKHI;
		hi = (hi << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
		SPICTL = ADCKHI;
		lo = (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
	
		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);

		SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
		SPICTL = ADCKHI;
		lo = (lo << 1) | (SPIRD & 1);
		SPICTL = CSHI;

		if(adc_size > 1) 
			dbuffer[buf_index++] = lo << 4;
		dbuffer[buf_index++] = hi;

	    while(TCNT1 < timer) ;		// Wait on TCNT1	
		asm("nop");	asm("nop");	asm("nop");
	    }
	PORTC &= 127;
}

u16 read_sadc(u8 ch)
{
	SPIWR = OUTHI;					   	// MCP3208 start bit
	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 1st clock	
	SPICTL = ADCKHI; SPICTL = ADCKHI;

	//if(diffmode) SPIWR = OUTLO;			// DATA remains HI, for SGL mode

	SPICTL = ADCKLO;	SPICTL = ADCKLO;// 2nd clock
	SPICTL = ADCKHI;

	if(ch & 4) 							// D2 bit of channel
		SPIWR = OUTHI;		
	else
		SPIWR = OUTLO;		
	SPICTL = ADCKLO;SPICTL = ADCKLO;	// 3rd clock
	SPICTL = ADCKHI;

	if(ch & 2) 							// D1 bit of channel
		SPIWR = OUTHI;		
	else
		SPIWR = OUTLO;		
	SPICTL = ADCKLO;SPICTL = ADCKLO;	// 4th clock
	SPICTL = ADCKHI;

	if(ch & 1) 							// D0 bit of channel
		SPIWR = OUTHI;		
	else
		SPIWR = OUTLO;		
	SPICTL = ADCKLO;SPICTL = ADCKLO;	// 5th clock
	SPICTL = ADCKHI; 

	SPICTL = ADCKLO;					// 6th clock

	TCCR1B = (1<<CS11);				// Counter1 Normal mode, 1 MHz
	TCNT1 = 0;
	while(TCNT1L < sampling_time) ;		// Wait for sampling
	SPICTL = ADCKHI; SPICTL = ADCKHI; 

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 7th clock, Null bit
	SPICTL = ADCKHI; SPICTL = ADCKHI;

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 8th clock, B11
	SPICTL = ADCKHI;
	hi = SPIRD & 1;

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 9th clock, B10
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 10th clock, B9
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
 
	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 11th clock, B8
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 12th clock, B7
	SPICTL = ADCKHI;
	lo = (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 13th clock, B6
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 14th clock, B5
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 15th clock, B4
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 16th clock, B3
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 17th clock, B2
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 18th clock, B1
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);

	SPICTL = ADCKLO; SPICTL = ADCKLO;	// 19th clock, B0
	SPICTL = ADCKHI;
	lo = (lo << 1) | (SPIRD & 1);
	SPICTL = CSHI;

	return (hi << 8) | lo;
}


void  fast_read_sadc(u8 ch)	// data saved in hi. Used by trigger routine only
{
	u8 d0 = ((ch & 1)<<1) | 1;	// Channel D0
	u8 d1 = (ch & 2) | 1;		// Channel D1
	u8 d2 = ((ch & 4)>>1) | 1;	// Channel D2

	SPIWR = OUTHI;		// start bit
	SPICTL = ADCKLO;	// 1st clock	
	SPICTL = ADCKHI;  
			// DATA remains HI, for SGL mode
	SPICTL = ADCKLO;	// 2nd clock
	SPICTL = ADCKHI;
	
	SPIWR = d2;			// Channel # D2
	SPICTL = ADCKLO;  	// 3rd clock
	SPICTL = ADCKHI;

	SPIWR = d1;			// Channel # D1
	SPICTL = ADCKLO; 	// 4th clock
	SPICTL = ADCKHI;

	SPIWR = d0;			// Channel # D0
	SPICTL = ADCKLO;	// 5th clock
	SPICTL = ADCKHI; SPICTL = ADCKHI; 		//samplimg start

	SPICTL = ADCKLO; SPICTL = ADCKLO;  		// 6th clock
	SPICTL = ADCKHI; 						// sampling end
	SPICTL = ADCKLO;	// 7th clock, Null bit
	SPICTL = ADCKHI;  

	SPICTL = ADCKLO;	// 8th clock, B11
	SPICTL = ADCKHI;
	hi = SPIRD & 1;

	SPICTL = ADCKLO;	// 9th clock, B10
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO;	// 10th clock, B9
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
 
	SPICTL = ADCKLO;	// 11th clock, B8
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO;	// 12th clock, B7
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
	
	SPICTL = ADCKLO;	// 13th clock, B6
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);

	SPICTL = ADCKLO;	// 14th clock, B5
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
	SPICTL = ADCKLO;	// 15th clock, B4
	SPICTL = ADCKHI;
	hi = (hi << 1) | (SPIRD & 1);
	SPICTL = CSHI;
}


void set_dac(u8 ch, u16 val)		// channel number & data
{
	SPICTL = DACKLO;						// DAC CS and CLK goes LO
	SPIWR = (ch << 1) | 1;					// channel select bit and PB0 pullup
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 1st clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;
	
	SPIWR = OUTHI;			// Buffer enable
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 2st clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;

	SPIWR = OUTHI;			// gain = 1
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 3rd clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;

	SPIWR = OUTHI;			// power down bit
	SPICTL = DACKLO;	SPICTL = DACKLO;	// 4th clock	
	SPICTL = DACKHI;    SPICTL = DACKHI;

	tmp16 = 0x800;
	for(hi=0; hi<12; ++hi)
		{
		if(tmp16 & val)
			SPIWR = OUTHI;			// data bit PB1 + pullup PB0
		else
			SPIWR = OUTLO;
		SPICTL = DACKLO;	SPICTL = DACKLO;	// send clock	
		SPICTL = DACKHI;    SPICTL = DACKHI;
		tmp16 >>= 1;
		}
	SPICTL = CSHI;
}


//------------------ Time Interval Measurements ----------------------
boolean wait_for_high(u8 mask)	// Wait until the Input is HIGH
{
/*Returns TRUE if any of the Digital Input Socket specified in the 
'mask' goes HIGH. If mask is zero, waits for a rising edge on CMP
input socket. Timeout after '50 * TIMEOUTVAL' milliseconds.
*/
for(;;)
    {
    if(mask)			// Check on Digins
       {
       if(PINC & mask)		// Digital Input specified by mask is HIGH ?
         break;
       }
    else			// Mask = 0 means ACMP input
      if(~ACSR & (1<< ACO))	// When AIN- goes above 1.23V, ACO goes LOW
        break;
       
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
return TRUE;
}

boolean wait_for_low(u8 mask)	// Wait until the Input is LOW
{
for(;;)
    {
    if(mask)			// Check on Digins
       {
       if(~PINC & mask)		// Digital Input specified by mask is LOW ?
         break;
       }
    else			// Mask = 0 means ACMP input
      if(ACSR & (1<< ACO))	// When AIN- goes below 1.23V, ACO goes HIGH
        break;
       
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
return TRUE;
}


boolean clear_on_rise(u8 mask)	// Clear counters on rising edge
{
/* Clears the TCNT1 register and variable HTM and returns TRUE if any of the 
Digital Input (sockets) specified in the 'mask'goes HIGH. 
If mask is zero, waits for a rising edge on analog comparator
input socket.
*/
HTM = 0;
for(;;)
    {
    if(mask)			// Check on Digins
       {
       if(PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(~ACSR & (1<< ACO))	// When AIN- goes above 1.23V, ACO goes LOW
        break;
       
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
TCNT1 = 0; 
HTM = 0;
return TRUE;
}

boolean clear_on_fall(u8 mask)	// Clear counters on falling edge
{
HTM = 0;
for(;;)
    {
    if(mask)			
       {
       if(~PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(ACSR & (1<< ACO))	// When AIN- goes below 1.23V, ACO goes HIGH
        break;

    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
TCNT1 = 0;    
HTM = 0;
return TRUE;
}

boolean mark_on_rise(u8 mask)	// Save the 24 bit counter to dbuffer
{
/* Saves the current value of TCNT1 register to variable 'tmp16' when the
Digital Input (sockets) specified in the 'mask' goes HIGH. If mask is zero,
save on the rising edge of analog comparator input socket.
TCNT1 is cleared every time it touches 'TIMESIZE' and variable 'HTM' is incremeted.
8 bit HTM and 16 bit TCNT1 together stores a 24 bit size time interval
that is send to the PC.
*/
for(;;)		
    {
    if(mask)			
       {
       if(PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(~ACSR & (1<< ACO))	// When AIN- goes above 1.23V, ACO goes LOW
        break;

    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
dbuffer[buf_index++] = TCNT1L;
dbuffer[buf_index++] = TCNT1H;
dbuffer[buf_index++] = HTM;
return TRUE;
}

boolean mark_on_fall(u8 mask)	// Save counter to dbuffer 
{
for(;;)
    {
    if(mask)	
       {
       if(~PINC & mask)		// Digital Input specified by mask
         break;
       }
    else			// Mask = 0 means ACMP input
      if(ACSR & (1<< ACO))	// When AIN- goes below 1.23V, ACO goes HIGH
        break;
 
    if(TCNT1 > TIMERSIZE)
       {
       TCNT1 = 0;
       if(++HTM > TIMEOUTVAL)
         {
         dbuffer[0] = TIMEOUT;		// Timeout error
         return FALSE;
         }
       }
    }
dbuffer[buf_index++] = TCNT1L;
dbuffer[buf_index++] = TCNT1H;
dbuffer[buf_index++] = HTM;
return TRUE;
}


//------------------ Actions before capturing waveforms ------------------
#define	ASET 		1
#define	ACLR		2
#define	APULSEHI	3
#define	APULSELO	4
#define	AWAITHI		5
#define	AWAITLO		6
#define	AWAITRISE	7
#define	AWAITFALL	8

void triggers(u8 ch, u16 tg)
{
	TCNT1 =0;
	HTM = 0;
	switch(action)
		{
		case 0:
			for(tmp16 = 0; tmp16 < 200; ++ tmp16)	// NEED changes here
				{
				fast_read_sadc(ch);		// result stored in hi
				lo = hi;
				TCNT1 = 0;
				while(TCNT1 < 20) ;
				fast_read_sadc(ch);		// result stored in hi
				if( (lo < hi) && (hi >= triglo) && (hi <= trighi) ) break;
				}
			break;

		case ASET:
	        PORTC |= actionmask;			// Set the output bits as per mask
			break;

      	case ACLR:
	        PORTC &= ~actionmask;			// Clear the output bits as per mask
			break;

		case APULSEHI:
	        PORTC |= actionmask;			// Set the output bits as per mask
			TCNT1 = 0;
			while(TCNT1 < pulse_width) ;	// delay			
	        PORTC &= ~actionmask;			// Clear the output bits as per mask
			break;

        case APULSELO:
	        PORTC &= ~actionmask; 			// Clear the output bit as per mask
			TCNT1 = 0;
			while(TCNT1 < pulse_width) ;	// delay			
    	    PORTC |= actionmask;			// Set the output bits as per mask
			break;

		case AWAITHI:
			wait_for_high(actionmask); 		// Wait for HIGH
	        break;

		case AWAITLO:
	        wait_for_low(actionmask);  		// Wait for LOW
	        break;

		case AWAITRISE:
	        wait_for_low(actionmask);  		// Wait for LOW and then
			wait_for_high(actionmask); 		// Wait for HIGH
	        break;

		case AWAITFALL:
			wait_for_high(actionmask); 		// Wait for HIGH and then
	        wait_for_low(actionmask);  		// Wait for LOW
	        break;
        }
	dbuffer[0] = 'D';						// Action timeout NOT an error ???
}


int main()
{
u8 cmd,ch;
u16 ns, tg;				// Number of samples and Time gap
DDRA = 31; 				// D0 to D4 are 555 capacitor switches. DDR will change.
PORTA = 0;				// no pullups
DDRB = 2+8;				// Serial OUT , OC0
DDRC = 0xF0;			// 4 MSBs are outputs
DDRD = 128+16+8+4;		// PWG, CSDAC, CSADC, CLOCK
PORTC= 3;				// Enable pullup resistors for PC0 and PC1


// Initialize the RS232 communication link to the PC 38400, 8, 1, E
UCSRB = (1<<RXEN) | (1<<TXEN);
//UCSRA = (1 << U2X);
UBRRH = 0;
UBRRL = 12;		// At 8MHz (12 =>38400) (25 => 19200)
UCSRC = (1<<URSEL) | (1<<UPM1) | (1<<UCSZ1) | (1<<UCSZ0); // 8,1,E

ACSR = (1<<ACBG);		// AIN(+) connected to Vbg = 1.23V
TCCR1B = (1<<CS11);		// Counter1 Normal mode, 1 MHz

buf_index = 0;
for(;;)
    {
    while ( !(UCSRA & (1<<RXC)) ) ;			// wait for receiver data
    dbuffer[buf_index++] = UDR;		    	// Put the byte in the buffer.

    if(buf_index*GROUPSIZE > dbuffer[0])	// Process after required no. of arguments
      {
	  HTM = 0; TCNT1 = 0;		// Keep them in known state
	  cmd = dbuffer[0];
	  dbuffer[0] = 'D';			// Fill reply Assuming Success
	  buf_index = 1;			// Filling of return Data from second byte onwards
	  //PORTC |= 32; used for touble shooting
      switch(cmd)
		 {
		 case CAPTURE_M32:
			ch = dbuffer[1];					  // ATmega32 ADC channel
	  		ns = dbuffer[2] | (dbuffer[3] << 8);  // Number of samples
			tg = dbuffer[4] | (dbuffer[5] << 8) ; // Time gap
			capture_m32(ch, ns, tg);
			break;

	     case CAPTURE:
			ch = dbuffer[1];					  // ADC channel
	  		ns = dbuffer[2] | (dbuffer[3] << 8);  // Number of samples
			tg = dbuffer[4] | (dbuffer[5] << 8) ; // Time gap
			if( (ns*adc_size > BUFSIZE) || (tg < MINTG) || (tg > MAXTG))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			triggers(ch,tg);
			dbuffer[buf_index++] = adc_size;	 // adc_size to the caller
			capture(ch, ns, tg);    // dbuffer[1] is channel #		 
		    break;

	     case CAPTURE01:	// Captures ch0 & ch1
	  		ns = dbuffer[1] | (dbuffer[2] << 8);  // Number of samples
			tg = dbuffer[3] | (dbuffer[4] << 8);	 // Time gap
			if( (2*ns*adc_size > BUFSIZE) || (tg < MINTG) ||(tg > MAXTG))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			dbuffer[buf_index++] = adc_size;		 // adc_size to the caller
			triggers(0,tg);
			capture01(ns, tg); 		 
		    break;

         case QCAPTURE:
			ch = dbuffer[1];
	  		ns = dbuffer[2] | (dbuffer[3] << 8);  // Number of samples
			tg = dbuffer[4];
			if( (ns > BUFSIZE) || (tg < MINTGQ) || (tg > MAXTGQ))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			triggers(ch,tg);
			if(dbuffer[4] == 10)		// Special case Time gap
				qcapture_min(ch, ns, dbuffer[4]);
			else
				qcapture(ch, ns, dbuffer[4]);
			break;

	     case QCAPTURE01:	// Captures ch0 & ch1
	  		ns = dbuffer[1] | (dbuffer[2] << 8);   // Number of samples
			tg = dbuffer[3];
			if( (2*ns > BUFSIZE) || (tg < MINTGQ)|| (tg > MAXTGQ))
				{
          		dbuffer[0] = INVARG;
          		break;
				}
			triggers(0,tg);
			qcapture01(ns, dbuffer[3]); 	  // [3] is time gap
		    break;

 	     case SETADCSIZE:		// 12 bit ADC, set to 1 or 2 bytes
        	if(dbuffer[1] > 2)
          		{
          		dbuffer[0] = INVARG;
          		break;
          		}
	        adc_size = dbuffer[1];
    	    break;

 	     case SETSAMTIME:		// Serial ADC, sampling time, clock 6
        	if(dbuffer[1] > 250)
          		{
          		dbuffer[0] = INVARG;
          		break;
          		}
	        sampling_time = dbuffer[1];
    	    break;

	     case READADC:		// Reads the requested channel of MCP3208 ADC
			tmp16 = read_sadc(dbuffer[1]);
			tmp16 += read_sadc(dbuffer[1]);
			tmp16 += read_sadc(dbuffer[1]);
			tmp16 += read_sadc(dbuffer[1]);
			tmp16 /= 4;
			dbuffer[buf_index++] = tmp16 & 255;
			dbuffer[buf_index++] = tmp16 >> 8;
 	        break;

	     case SETDAC:			// Set the MCP4922 DAC
	  		set_dac(dbuffer[1], dbuffer[2] | (dbuffer[3] << 8));
      		break;

	     case SETACTION:
/* 
action 1 to 4 : SET/CLR/PULSE Digital Outputs just before capturing waveform.
action 5 to 8 : Waits on Levels/Edges on Digital Inputs.
actionmask MSBs keep the Digout Bits. LSBs keep the Digin Bits.
*/
			if(dbuffer[1] <= 4)
				{
				action = dbuffer[1];
				actionmask = dbuffer[2] << 4;	// keep in high nibble
				}
			else
			if(dbuffer[1] <= 8)
				{
				action = dbuffer[1];
				actionmask = dbuffer[2] & 15;	// Keep in low nibble
				}
			else
          		dbuffer[0] = INVARG;
	        break;

    	 case ADCTRIGS:
/* To get a stable display of periodic waveform, every time the digitization
should start roughly at the same position of the waveform. Two levels are
specified to allow rising and falling edge triggering.
*/    
	     	triglo = dbuffer[1];			// First Trigger level
		    trighi = dbuffer[2];			// Second Trigger Level
		    break;

		 case ADC2CMP:	// ch > 7 means disconnect routing
			if(dbuffer[1] <= 7)				
				{
		        ADMUX = dbuffer[1];		
      			SFIOR = (1 << ACME);	 	// Route ADC input to AIN-
		        ADCSRA = 0;					// Disable ADC
				}
			else
				SFIOR = 0;					// Disconnect AIN- from ADC inputs 
			break;			

// Timer Counter related functions start here.
	     case SETCOUNTER0:	// TC0 in CTC mode, caller sends CS bits & OCR0
	        TCCR0 = (1<<WGM01) | (1<<COM00) | (dbuffer[1] & 7);	
	        OCR0 = dbuffer[2];
		    break;

	     case SETCOUNTER2:	// TC2 in CTC mode, caller sends CS bits & OCR2
	        TCCR2 = (1<<WGM21) | (1<<COM20) | (dbuffer[1] & 7);	
	        OCR2 = dbuffer[2];
		    break;

	     case SETPWM:			// Set TC0 to 488 Hz PWM 
			if(dbuffer[1] == 0) 
				TCCR0 = 0;		// Switch off
			else
				{
	      		OCR0 = dbuffer[1];
    	  		TCCR0 = (1<<WGM01) | (1<<WGM00) | (1<<COM01) | (1<<CS01) | (1<<CS00); // Fast PWM mode
				}
      		break;

	     case SETPWMDAC:			// Set TC0 to 31.25 kHz PWM 
			if(dbuffer[1] == 0) 
				TCCR0 = 0;		// Switch off
			else
				{
	      		OCR0 = dbuffer[1];
    	  		TCCR0 = (1<<WGM01) | (1<<WGM00) | (1<<COM01) | (1<<CS00); // Fast PWM mode
				}
      		break;


	     case IRSEND:
			// Infrared communication vis SQR1 output
			// Sets TC2 in CTC mode, as per the byte to send
			#define SPACE 500
			OCR2 = 104;  										// f = 1e6/256/OCR2
			TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20);		// Counter2 CTC mode, pre-scale = 1
			TCNT1 = 0; while(TCNT1 < SPACE*5);		// beginning
			TCCR2 = 0;
			TCNT1 = 0; while(TCNT1 < SPACE);

			lo = dbuffer[1];			// byte to transmit
			for(hi=0; hi < 8; ++hi)
				{
				TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20);		// Counter2 CTC mode, pre-scale = 1
				TCNT1 = 0; while(TCNT1 < SPACE) ;
				TCCR2 = 0;
				TCNT1 = 0; while(TCNT1 < SPACE);
				if(lo & 128)
					{
					TCNT1 = 0; while(TCNT1 < SPACE);			
					}
				lo <<= 1;
				}
			TCCR2 = (1<<WGM21) | (1<<COM20) | ( 1 << CS20);		// Counter2 CTC mode, pre-scale = 1
			TCNT1 = 0; while(TCNT1 < SPACE) ;
			TCCR2 = 0;
			TCNT1 = 0; while(TCNT1 < SPACE) ;
		    break;

/*-------------------- Passive Time Interval Measurements.-----------------
 Time interval measurement functions using DIGITAL I/O and ACOMP Sockets.
The 16 bit Timer/Counter is used for time measurements. A 1 MHz clock is fed
to the counter and the variable HTM is incremented after when it reaches 50000.
Timeout is provided on all time measurements.
Measures the time interval between a Level Transition one Digital Input to 
another. The 8 bit input data specifies the Input Sockets to wait for.
The HIGH 4 bits contain the Sockets to look for the First Transition.
For example dbuffer[1] = 00100001, time between a transition on D1 to a 
transition on D0 is measured.
In fact it is possible to wait for more than one sockets at the same time and 
which ever come first can be taken. At the moment the Python function sets only 
a single bit in each half. The Start and Stop inputs could be same or different.

A special case arise when all the 4 bits are zero. In that case transition on
the Analog Comparator input Socket is waited for. Using the ADC2CMP function,
it is possible to route ADC input pins to Analog Comaparator Input.
*/ 
	     case R2RTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_low(hi))		// Just make sure the level is LOW
        	  if(clear_on_rise(hi))		// Clear counter on rising edge src pin 
          		if(wait_for_low(lo))	// DST pin should be LOW
            	  mark_on_rise(lo);		// Store counters at rising edge dst pin
      		break;

	     case F2FTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_high(hi))		// Just make sure the level is HIGH
        	  if(clear_on_fall(hi))		// Clear counter on falling edge src pin 
          		if(wait_for_high(lo))	// DST pin should be HIGH
            	  mark_on_fall(lo);		// Store counters at falling edge dst pin
      		break;

	     case R2FTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_low(hi))		// Just make sure the level is LOW
        	  if(clear_on_rise(hi))		// Clear counter on rising edge src pin 
            	mark_on_fall(lo);		// Store counters at falling edge dst pin
      		break;

	     case F2RTIME:
			hi = dbuffer[1] >> 4;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
      		if(wait_for_high(hi))		// Just make sure the level is HIGH
        	  if(clear_on_fall(hi))		// Clear counter on falling edge src pin 
            	mark_on_rise(lo);		// Store counters at rising edge dst pin
      		break;
		
	     case MULTIR2R:	
/* Measures the time interval between two rising edges on the same Input Socket.
The 4 LSBs of the first argument specifies the Input Socket to look for.
The second argument specifies the number of rising edges to be skipped in between
the two edges measured. For example dbuffer[2] = 9 returns the time taken
for 10 cycles. Averaging is useful for  better measurement accuracy.
*/    
	      	lo = dbuffer[1] & 15;		// pin number in 4 LSBs 
      		TCNT1 =0;
      		HTM = 0;
      		if(!wait_for_low(lo)) break;	// Make sure the level is LOW
      		if(!clear_on_rise(lo))break;	// Clear counter on rising edge src pin 
      		if(!wait_for_low(lo)) break;
     
      		while (dbuffer[2]--)
      			{
		        if(!wait_for_high(lo))break;
        		if(!wait_for_low(lo)) break;
        		}
			if(dbuffer[0] == TIMEOUT) break;
  			mark_on_rise(lo);				// Store counters at rising edge
		    break;

/*-------------------- Active Time Interval Measurements ----------------------
Sets the DIGITAL Output Sockets as per the 4 MSBs of the argument and measures 
the time from that to a Level Transition on the Input Socket specified by the 4 LSBs 
of the argument. 4 LSBs zero means Analog Comparator.
*/  
		 case SET2RTIME:
        	PORTC |= dbuffer[1] & 0xF0;		// SET as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_rise(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case SET2FTIME:
        	PORTC |= dbuffer[1] & 0xF0;		// SET as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_fall(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case CLR2RTIME:
        	PORTC &= ~(dbuffer[1] & 0xF0);	// CLR as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_rise(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case CLR2FTIME:
        	PORTC &= ~(dbuffer[1] & 0xF0);	// CLR as per 4 MSBs 
      		HTM = 0;
      		TCNT1 = 0;
      		mark_on_fall(dbuffer[1] & 15);	// Wait as per 4 LSBs
    		break;

		 case SETPULSEWID:
			pulse_width = dbuffer[1];
		    break;

    	 case SETPULSEPOL:			// For the PULSE2* functions
	     	pulse_pol = dbuffer[1];
      		break;

		 case USOUND:					// Sends a Pulse of PC5, look on PC2	
       		PORTC |= (1 << PC4);			// set OD0
			TCNT1 = 0;
			while(TCNT1L < pulse_width) ;	//kill time
	        PORTC &= ~(1 << PC4);			// Clear OD0
		    HTM = 0;
			TCNT1 = 0;     
			while(TCNT1 < DEADTIME) ;		// Wait to settle noise
		    mark_on_rise(1<<PC2);			// Store counters at rising of PC2
			break;			

		 case PULSE2RTIME:	
		 case PULSE2FTIME:	
			hi = dbuffer[1] & 0xF0;		// 4 MSBs start pins
     		lo = dbuffer[1] & 15;		// 4 LSBs end pins
		    if(pulse_pol)				// HIGH TRUE pulse
        		{
        		PORTC |= hi;			// Set source bit
				TCNT1 = 0;
				while(TCNT1L < pulse_width) ;	//kill time
		        PORTC &= ~hi;			// Restore old value
        		}
     		else						// LOW TRUE pulse
        		{
	        	PORTC &= ~hi;			// Clear source bit
				TCNT1 = 0;
				while(TCNT1L < pulse_width) ;	//kill time
		        PORTC |= hi;			// Restore old value
        		}
		    HTM = 0;
			TCNT1 = 0;     
			while(TCNT1 < DEADTIME) ;	// Wait to settle noise
			if(cmd == PULSE2RTIME)
			    mark_on_rise(lo);		// Store counters at rising of dst
			else
			    mark_on_fall(lo);		// Store counters at falling of dst

		    break;

//-----------------------Digital I/O functions-------------------------
	     case DIGOUT:
     		PORTC = (dbuffer[1] << 4) | 3;   // Only PCO & PC1 need to be pulled up
		    break;

	     case DIGIN:			// 3 bits of PortC, 4th is analog comparator output
	        ADMUX = 5;					// SENSOR output is on ADC input 5		
   			SFIOR = (1 << ACME);	 	// Route ADC input to AIN-
	        ADCSRA = 0;					// Disable ADC
     		dbuffer[buf_index++] = (PINC & 7) | ((ACSR & (1<<ACO))>>2);
     		break;

	     case WREEPROM:
			tmp16 = dbuffer[2] << 8;	// 16 bit Internal SEEPROM address by
		    tmp16 |= dbuffer[1];		// combining low and high bytes
			eeprom_write_byte ( (u8ptr)tmp16, dbuffer[3]);
	        break;

	     case RDEEPROM:
			tmp16 = dbuffer[2] << 8;	// 16 bit Internal SEEPROM address by
		    tmp16 |= dbuffer[1];		// combining low and high bytes
			ch = dbuffer[3];
			for(lo=0; lo < ch; ++lo)
				dbuffer[buf_index++] = eeprom_read_byte ((u8ptr)(tmp16+lo));
	        break;

//----------------------- Low level PORT access functions----------------
	     case SETDDR:
      		if(dbuffer[1] == 0) DDRA = dbuffer[2];
      		else if(dbuffer[1] == 1) DDRB = dbuffer[2];
		    else if(dbuffer[1] == 2) DDRC = dbuffer[2];
      		else if(dbuffer[1] == 3) DDRD = dbuffer[2];
		    break;

	     case SETPORT:
      		if(dbuffer[1] == 0) PORTA = dbuffer[2];
      		else if(dbuffer[1] == 1) PORTB = dbuffer[2];
      		else if(dbuffer[1] == 2) PORTC = dbuffer[2];
      		else if(dbuffer[1] == 3) PORTD = dbuffer[2];
      		break;
	     
		 case GETPORT:
      		if(dbuffer[1] == 0) dbuffer[buf_index++] = PINA;
      		else if(dbuffer[1] == 1) dbuffer[buf_index++] = PINB;
      		else if(dbuffer[1] == 2) dbuffer[buf_index++] = PINC;
      		else if(dbuffer[1] == 3) dbuffer[buf_index++] = PIND;
      		break;

		 case GETVERSION:
      		memcpy_P(&dbuffer[1], version,5);
      		buf_index += 5;
      		break;

    	 default:
      		dbuffer[0] = INVCMD;		// Invalid Command
      		break;	
         }

   	  while( !(UCSRA & (1 <<UDRE) ) );
      UDR = dbuffer[0];					// Send the response byte in all cases
	  // If no error, send the data bytes to the PC. No handshake used.
	  if(dbuffer[0] == 'D')
	 	 for(tmp16=1; tmp16 < buf_index; ++tmp16)	
      		{
    		while( !(UCSRA & (1 <<UDRE) ) );
    		UDR = dbuffer[tmp16];
			}
      buf_index = 0;
	  //PORTC &= ~32;		used for trouble shooting only
      }
    }
return 0;
}