1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
#!python
#cython: boundscheck=False, wraparound=False, initializedcheck=False, cdivision=True, freethreading_compatible=True
"""Interstellar dust extinction functions."""
import numpy as np
cimport numpy as np
__version__ = "0.4.8"
__all__ = ['ccm89', 'odonnell94', 'Fitzpatrick99', 'fitzpatrick99', 'fm07',
'calzetti00', 'apply', 'remove']
# We use some C code for Cubic splines in the Fitzpatrick99 and fm07 functions.
# There are two reasons for using this over something from scipy:
#
# First, Fitzpatrick99 specifies "natural" boundary conditions on the splines,
# but in scipy.interpolate, this can only be achieved using the CubicSpline
# class, which is new in scipy v0.18 (a bit too recent).
#
# Second, this C code is significantly faster than CubicSpline.
include "extern/bsplines.pxi"
# ------------------------------------------------------------------------------
# Utility functions for converting wavelength units
cdef double aa_to_invum(double x):
"""Convert Angstroms to inverse microns"""
return 1e4 / x
cdef double noop(double x):
return x
ctypedef double (*scalar_func)(double)
# -----------------------------------------------------------------------------
# Cardelli, Clayton & Mathis (1989)
cdef inline void ccm89ab_ir_invum(double x, double *a, double *b):
"""ccm89 a, b parameters for 0.3 < x < 1.1 (infrared)"""
cdef double y
y = x**1.61
a[0] = 0.574 * y
b[0] = -0.527 * y
cdef inline void ccm89ab_opt_invum(double x, double *a, double *b):
"""ccm89 a, b parameters for 1.1 < x < 3.3 (optical)"""
cdef double y
y = x - 1.82
a[0] = ((((((0.329990*y - 0.77530)*y + 0.01979)*y + 0.72085)*y - 0.02427)*y
- 0.50447)*y + 0.17699)*y + 1.0
b[0] = ((((((-2.09002*y + 5.30260)*y - 0.62251)*y - 5.38434)*y + 1.07233)*y
+ 2.28305)*y + 1.41338)*y
cdef inline void ccm89ab_uv_invum(double x, double *a, double *b):
"""ccm89 a, b parameters for 3.3 < x < 8.0 (ultraviolet)"""
cdef double y, y2, y3
y = x - 4.67
a[0] = 1.752 - 0.316*x - (0.104 / (y*y + 0.341))
y = x - 4.62
b[0] = -3.090 + 1.825*x + (1.206 / (y*y + 0.263))
if x > 5.9:
y = x - 5.9
y2 = y * y
y3 = y2 * y
a[0] += -0.04473*y2 - 0.009779*y3
b[0] += 0.2130*y2 + 0.1207*y3
cdef inline void ccm89ab_fuv_invum(double x, double *a, double *b):
"""ccm89 a, b parameters for 8 < x < 11 (far-UV)"""
cdef double y, y2, y3
y = x - 8.
y2 = y * y
y3 = y2 * y
a[0] = -0.070*y3 + 0.137*y2 - 0.628*y - 1.073
b[0] = 0.374*y3 - 0.420*y2 + 4.257*y + 13.670
cdef inline void ccm89ab_invum(double x, double *a, double *b):
"""ccm89 a, b parameters for 0.3 < x < 11 in microns^-1"""
if x < 1.1:
ccm89ab_ir_invum(x, a, b)
elif x < 3.3:
ccm89ab_opt_invum(x, a, b)
elif x < 8.:
ccm89ab_uv_invum(x, a, b)
else:
ccm89ab_fuv_invum(x, a, b)
def ccm89(double[:] wave, double a_v, double r_v, unit='aa',
np.ndarray out=None):
"""ccm89(wave, a_v, r_v, unit='aa', out=None)
Cardelli, Clayton & Mathis (1989) extinction function.
The parameters given in the original paper [1]_ are used.
The claimed validity is 1250 Angstroms to 3.3 microns.
Parameters
----------
wave : numpy.ndarray (1-d)
Wavelengths or wavenumbers.
a_v : float
Scaling parameter, A_V: extinction in magnitudes at characteristic
V band wavelength.
r_v : float
Ratio of total to selective extinction, A_V / E(B-V).
unit : {'aa', 'invum'}, optional
Unit of wave: 'aa' (Angstroms) or 'invum' (inverse microns).
out : np.ndarray, optional
If specified, store output values in this array.
Returns
-------
Extinction in magnitudes at each input wavelength.
Notes
-----
In Cardelli, Clayton & Mathis (1989) the mean
R_V-dependent extinction law, is parameterized as
.. math::
<A(\lambda)/A_V> = a(x) + b(x) / R_V
where the coefficients a(x) and b(x) are functions of
wavelength. At a wavelength of approximately 5494.5 angstroms (a
characteristic wavelength for the V band), a(x) = 1 and b(x) = 0,
so that A(5494.5 angstroms) = A_V. This function returns
.. math::
A(\lambda) = A_V (a(x) + b(x) / R_V)
References
----------
.. [1] Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
"""
cdef:
size_t i
size_t n = wave.shape[0]
double a = 0.0
double b = 0.0
if out is None:
out = np.empty(n, dtype=np.float64)
else:
assert out.shape == wave.shape
assert out.dtype == np.float64
cdef scalar_func convert_wave
if unit == 'aa':
convert_wave = &aa_to_invum
elif unit == 'invum':
convert_wave = &noop
else:
raise ValueError("unrecognized unit")
cdef double[:] out_view = out
for i in range(n):
ccm89ab_invum(convert_wave(wave[i]), &a, &b)
out_view[i] = a_v * (a + b / r_v)
return out
# -----------------------------------------------------------------------------
# O'Donnell (1994)
cdef inline void od94ab_opt_invum(double x, double *a, double *b):
"""od94 a, b parameters for 1.1 < x < 3.3 (optical)"""
cdef double y
y = x - 1.82
a[0] = (((((((-0.505*y + 1.647)*y - 0.827)*y - 1.718)*y + 1.137)*y +
0.701)*y - 0.609)*y + 0.104)*y + 1.0
b[0] = (((((((3.347*y - 10.805)*y + 5.491)*y + 11.102)*y - 7.985)*y -
3.989)*y + 2.908)*y + 1.952)*y
cdef inline void od94ab_invum(double x, double *a, double *b):
"""od94 a, b parameters for 0.3 < x < 11 in microns^-1"""
if x < 1.1:
ccm89ab_ir_invum(x, a, b)
elif x < 3.3:
od94ab_opt_invum(x, a, b)
elif x < 8.:
ccm89ab_uv_invum(x, a, b)
else:
ccm89ab_fuv_invum(x, a, b)
def odonnell94(double[:] wave, double a_v, double r_v, unit='aa',
np.ndarray out=None):
"""odonnell94(wave, a_v, r_v, unit='aa', out=None)
O'Donnell (1994) extinction function.
Like Cardelli, Clayton, & Mathis (1989) [1]_ but using the O'Donnell
(1994) [2]_ optical coefficients between 3030 A and 9091 A.
Parameters
----------
wave : numpy.ndarray (1-d)
Wavelengths or wavenumbers.
a_v : float
Scaling parameter, A_V: extinction in magnitudes at characteristic
V band wavelength.
r_v : float
Ratio of total to selective extinction, A_V / E(B-V).
unit : {'aa', 'invum'}, optional
Unit of wave: 'aa' (Angstroms) or 'invum' (inverse microns).
out : np.ndarray, optional
If specified, store output values in this array.
Returns
-------
Extinction in magnitudes at each input wavelength.
Notes
-----
This function matches the Goddard IDL astrolib routine CCM_UNRED.
From the documentation for that routine:
1. The CCM curve shows good agreement with the Savage & Mathis (1979)
[3]_ ultraviolet curve shortward of 1400 A, but is probably
preferable between 1200 and 1400 A.
2. Curve is extrapolated between 912 and 1000 A as suggested by
Longo et al. (1989) [4]_
3. Valencic et al. (2004) [5]_ revise the ultraviolet CCM
curve (3.3 -- 8.0 um^-1). But since their revised curve does
not connect smoothly with longer and shorter wavelengths, it is
not included here.
References
----------
.. [1] Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
.. [2] O'Donnell, J. E. 1994, ApJ, 422, 158O
.. [3] Savage & Mathis 1979, ARA&A, 17, 73
.. [4] Longo et al. 1989, ApJ, 339,474
.. [5] Valencic et al. 2004, ApJ, 616, 912
"""
cdef:
size_t i
size_t n = wave.shape[0]
double a = 0.0
double b = 0.0
if out is None:
out = np.empty(n, dtype=np.float64)
else:
assert out.shape == wave.shape
assert out.dtype == np.float64
cdef scalar_func convert_wave
if unit == 'aa':
convert_wave = &aa_to_invum
elif unit == 'invum':
convert_wave = &noop
else:
raise ValueError("unrecognized unit")
cdef double[:] out_view = out
for i in range(n):
od94ab_invum(convert_wave(wave[i]), &a, &b)
out_view[i] = a_v * (a + b / r_v)
return out
# -----------------------------------------------------------------------------
# Fitzpatrick (1999)
DEF F99_X0 = 4.596
DEF F99_GAMMA = 0.99
DEF F99_C3 = 3.23
DEF F99_C4 = 0.41
DEF F99_C5 = 5.9
DEF F99_X02 = F99_X0 * F99_X0
DEF F99_GAMMA2 = F99_GAMMA * F99_GAMMA
cdef inline double f99_uv_invum(double x, double a_v, double r_v):
"""f99 extinction for x < 1e4/2700 microns^-1"""
cdef double c1, c2, d, x2, y, y2, rv2, k
c2 = -0.824 + 4.717 / r_v
c1 = 2.030 - 3.007 * c2
x2 = x * x
y = x2 - F99_X02
d = x2 / (y * y + x2 * F99_GAMMA2)
k = c1 + c2 * x + F99_C3 * d
if x >= F99_C5:
y = x - F99_C5
y2 = y * y
k += F99_C4 * (0.5392 * y2 + 0.05644 * y2 * y)
return a_v * (1. + k / r_v)
cdef double *_F99_XKNOTS = [0.0, 1.e4 / 26500., 1.e4 / 12200., 1.e4 / 6000.,
1.e4 / 5470., 1.e4 / 4670., 1.e4 / 4110.,
1.e4 / 2700., 1.e4 / 2600.]
cdef void _f99_kknots(double *xknots, double r_v, double *out):
"""Fill knot k values in Fitzpatrick 99 for given R_V.
xknots and out should be arrays of length 9."""
cdef double c1, c2, d, x, x2, y, rv2
cdef int i
c2 = -0.824 + 4.717 / r_v
c1 = 2.030 - 3.007 * c2
rv2 = r_v * r_v
out[0] = -r_v
out[1] = 0.26469 * r_v/3.1 - r_v
out[2] = 0.82925 * r_v/3.1 - r_v
out[3] = -0.422809 + 1.00270*r_v + 2.13572e-04*rv2 - r_v
out[4] = -5.13540e-02 + 1.00216 * r_v - 7.35778e-05*rv2 - r_v
out[5] = 0.700127 + 1.00184*r_v - 3.32598e-05*rv2 - r_v
out[6] = (1.19456 + 1.01707*r_v - 5.46959e-03*rv2 +
7.97809e-04 * rv2 * r_v - 4.45636e-05 * rv2*rv2 - r_v)
for i in range(7,9):
x2 = xknots[i] * xknots[i]
y = (x2 - F99_X02)
d = x2 / (y * y + x2 * F99_GAMMA2)
out[i] = c1 + c2*xknots[i] + F99_C3 * d
cdef class Fitzpatrick99(object):
"""Fitzpatrick (1999) dust extinction function for arbitrary R_V.
An instance of this class is a callable that can be used as
``f(wave, a_v)`` where ``wave`` is a 1-d array of wavelengths and ``a_v``
is a scalar value.
Parameters
----------
r_v : float, optional
R_V value. Default is 3.1.
Examples
--------
Create a callable that gives the extinction law for a given ``r_v``
and use it:
>>> f = Fitzpatrick99(3.1)
>>> f(np.array([3000., 4000.]), 1.)
array([ 1.79939955, 1.42338583])
"""
cdef bs_spline1d *spline # pointer to c struct
cdef readonly double r_v
def __cinit__(self, double r_v=3.1):
self.r_v = r_v
cdef double *kknots = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
_f99_kknots(_F99_XKNOTS, r_v, kknots)
cdef bs_bcs bcs
cdef bs_exts exts
cdef bs_errorcode code
bcs.left.type = BS_DERIV2
bcs.left.value = 0.0
bcs.right.type = BS_DERIV2
bcs.right.value = 0.0
exts.left.type = BS_VALUE
exts.left.value = 0.0
exts.right.type = BS_VALUE
exts.right.value = 0.0
code = bs_spline1d_create(bs_array(_F99_XKNOTS, 9, 1),
bs_array(kknots, 9, 1),
bcs, exts, &self.spline)
assert_ok(code)
def __call__(self, np.ndarray wave not None, double a_v, unit='aa'):
cdef double[:] wave_view, out_view
cdef double r_v = self.r_v
cdef double ebv = a_v / r_v
cdef size_t i
cdef size_t n
cdef bs_errorcode code
# translate `wave` to inverse microns
if unit == 'invum':
pass
elif unit == 'aa':
wave = 1e4 / wave
else:
raise ValueError("unrecognized unit")
n = wave.shape[0]
out = np.empty(n, dtype=np.float64)
wave_view = wave
out_view = out
# Optical/IR spline: evaluate at all wavelengths; we will overwrite
# the UV points afterwards. These are outside the spline range, so
# they don't actually take too much time to evaluate.
# (outview actually holds "k" after this call; see below)
code = bs_spline1d_eval(self.spline, to_bs_array(wave_view),
to_bs_array(out_view))
assert_ok(code)
# Analytic function in the UV (< 2700 Angstroms).
for i in range(n):
# for optical/IR, `out` is actually k, but we wanted
# a_v/r_v * (k+r_v), so we adjust here.
if wave_view[i] < 3.7037037037037037: # 1e4 / 2700
out_view[i] = ebv * (out_view[i] + r_v)
# for UV, we overwrite the array with the UV function value.
else:
out_view[i] = f99_uv_invum(wave_view[i], a_v, r_v)
return out
def __dealloc__(self):
bs_spline1d_free(self.spline)
# functional interface for Fitzpatrick (1999) with R_V = 3.1
_fitzpatrick99_fixed = Fitzpatrick99(3.1)
def fitzpatrick99(wave, a_v, r_v=3.1, unit='aa'):
"""fitzpatrick99(wave, a_v, r_v=3.1, unit='aa')
Fitzpatrick (1999) dust extinction function.
Fitzpatrick (1999) [1]_ model which relies on the parametrization
of Fitzpatrick & Massa (1990) [2]_ in the UV (below 2700 A) and
spline fitting in the optical and IR. This function is defined
from 910 A to 6 microns, but note the claimed validity goes down
only to 1150 A. The optical spline points are not taken from F99
Table 4, but rather updated versions from E. Fitzpatrick (this
matches the Goddard IDL astrolib routine FM_UNRED).
Parameters
----------
wave : numpy.ndarray (1-d)
Input wavelengths or wavenumbers (see units).
a_v : float
Total V-band extinction in magnitudes.
r_v : float
Ratio of total to selective extinction, A_V / E(B-V).
unit : {'aa', 'invum'}, optional
Wavelength units: Angstroms or inverse microns.
Returns
-------
Extinction in magnitudes at each input wavelength.
References
----------
.. [1] Fitzpatrick, E. L. 1999, PASP, 111, 63
.. [2] Fitzpatrick, E. L. & Massa, D. 1990, ApJS, 72, 163
"""
if r_v == 3.1:
return _fitzpatrick99_fixed(wave, a_v, unit=unit)
else:
return Fitzpatrick99(r_v)(wave, a_v, unit=unit)
# -----------------------------------------------------------------------------
# Fitzpatrick & Massa 2007
DEF FM07_X0 = 4.592
DEF FM07_GAMMA = 0.922
DEF FM07_C1 = -0.175
DEF FM07_C2 = 0.807
DEF FM07_C3 = 2.991
DEF FM07_C4 = 0.319
DEF FM07_C5 = 6.097
DEF FM07_X02 = FM07_X0 * FM07_X0
DEF FM07_GAMMA2 = FM07_GAMMA * FM07_GAMMA
DEF FM07_R_V = 3.1 # Fixed for the time being (used in fm07kknots)
# Used for wave < 2700.
cdef inline double fm07_uv_invum(double x, double a_v):
"""fm07 for x < 1e4/2700 microns^-1 (ultraviolet)"""
cdef double d, x2, y, k
x2 = x * x
y = x2 - FM07_X02
d = x2 / (y*y + x2 * FM07_GAMMA2)
k = FM07_C1 + FM07_C2 * x + FM07_C3 * d
if x > FM07_C5:
y = x - FM07_C5
k += FM07_C4 * y * y
return a_v * (1. + k / FM07_R_V)
cdef void _fm07_kknots(double *xknots, double *out):
"""Return k knots given xknots for fm07. (Could be a static array)"""
cdef double d
cdef int i
for i in range(0, 5):
out[i] = (-0.83 + 0.63*FM07_R_V) * xknots[i]**1.84 - FM07_R_V
out[5] = 0.0
out[6] = 1.322
out[7] = 2.055
for i in range(8, 10):
d = xknots[i]**2 / ((xknots[i]**2 - FM07_X02)**2 +
xknots[i]**2 * FM07_GAMMA2)
out[i] = FM07_C1 + FM07_C2 * xknots[i] + FM07_C3 * d
cdef double *_FM07_XKNOTS = [0., 0.25, 0.50, 0.75, 1., 1.e4 / 5530.,
1.e4 / 4000., 1.e4 / 3300., 1.e4 / 2700.,
1.e4 / 2600.]
cdef double *_FM07_KKNOTS = [0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.]
_fm07_kknots(_FM07_XKNOTS, _FM07_KKNOTS)
def fm07(np.ndarray wave not None, double a_v, unit='aa'):
"""fm07(wave, a_v, unit='aa')
Fitzpatrick & Massa (2007) extinction model for R_V = 3.1.
The Fitzpatrick & Massa (2007) [1]_ model, which has a slightly
different functional form from that of Fitzpatrick (1999) [3]_
(`extinction_f99`). Fitzpatrick & Massa (2007) claim it is
preferable, although it is unclear if signficantly so (Gordon et
al. 2009 [2]_). Defined from 910 A to 6 microns.
Parameters
----------
wave : numpy.ndarray (1-d)
Wavelengths or wavenumbers.
a_v : float
Scaling parameter, A_V: extinction in magnitudes at characteristic
V band wavelength.
unit : {'aa', 'invum'}, optional
Unit of wave: 'aa' (Angstroms) or 'invum' (inverse microns).
References
----------
.. [1] Fitzpatrick, E. L. & Massa, D. 2007, ApJ, 663, 320
.. [2] Gordon, K. D., Cartledge, S., & Clayton, G. C. 2009, ApJ, 705, 1320
.. [3] Fitzpatrick, E. L. 1999, PASP, 111, 63
"""
cdef double[:] wave_view, out_view
cdef double ebv = a_v / FM07_R_V
cdef size_t i
cdef size_t n
# translate `wave` to inverse microns
if unit == 'invum':
pass
elif unit == 'aa':
wave = 1e4 / wave
else:
raise ValueError("unrecognized unit")
# create the spline (we do this here rather than globally so we can
# deallocate it.)
cdef bs_spline1d* spline
cdef bs_bcs bcs
cdef bs_exts exts
cdef bs_errorcode code
bcs.left.type = BS_DERIV2
bcs.left.value = 0.0
bcs.right.type = BS_DERIV2
bcs.right.value = 0.0
exts.left.type = BS_VALUE
exts.left.value = 0.0
exts.right.type = BS_VALUE
exts.right.value = 0.0
code = bs_spline1d_create(bs_array(_FM07_XKNOTS, 10, 1),
bs_array(_FM07_KKNOTS, 10, 1),
bcs, exts, &spline)
assert_ok(code)
n = wave.shape[0]
out = np.empty(n, dtype=np.float64)
wave_view = wave
out_view = out
# Optical/IR spline: evaluate at all wavelengths; we will overwrite
# the UV points afterwards. These are outside the spline range, so
# they don't actually take too much time to evaluate.
# (outview actually holds "k" after this call; see below)
code = bs_spline1d_eval(spline, to_bs_array(wave_view),
to_bs_array(out_view))
assert_ok(code)
bs_spline1d_free(spline)
# Analytic function in the UV (< 2700 Angstroms).
for i in range(n):
# for optical/IR, `out` is actually k, but we wanted
# a_v/r_v * (k+r_v), so we adjust here.
if wave_view[i] < 3.7037037037037037: # 1e4 / 2700
out_view[i] = ebv * (out_view[i] + FM07_R_V)
# for UV, we overwrite the array with the UV function value.
else:
out_view[i] = fm07_uv_invum(wave_view[i], a_v)
return out
# -----------------------------------------------------------------------------
# Calzetti 2000
# http://adsabs.harvard.edu/abs/2000ApJ...533..682C
cdef inline double calzetti00k_uv_invum(double x):
"""calzetti00 `k` for 0.12 microns < wave < 0.63 microns (UV/optical),
x in microns^-1"""
return 2.659 * (((0.011*x - 0.198)*x + 1.509)*x - 2.156)
cdef inline double calzetti00k_ir_invum(double x):
"""calzetti00 `k` for 0.63 microns < wave < 2.2 microns (optical/IR),
x in microns^-1"""
return 2.659 * (1.040*x - 1.857)
cdef inline double calzetti00_invum(double x, double r_v):
cdef double k
if x > 1.5873015873015872: # 1. / 0.63
k = calzetti00k_uv_invum(x)
else:
k = calzetti00k_ir_invum(x)
return 1.0 + k / r_v
def calzetti00(double[:] wave, double a_v, double r_v, unit='aa',
np.ndarray out=None):
"""calzetti00(wave, a_v, r_v, unit='aa', out=None)
Calzetti (2000) extinction function.
Calzetti et al. (2000, ApJ 533, 682) developed a recipe for
dereddening the spectra of galaxies where massive stars dominate the
radiation output, valid between 0.12 to 2.2 microns. They estimate
:math:`R_V = 4.05 \pm 0.80` from optical-IR observations of
4 starburst galaxies.
Parameters
----------
wave : numpy.ndarray (1-d)
Wavelengths or wavenumbers.
a_v : float
Scaling parameter, A_V: extinction in magnitudes at characteristic
V band wavelength.
r_v : float
Ratio of total to selective extinction, A_V / E(B-V).
unit : {'aa', 'invum'}, optional
Unit of wave: 'aa' (Angstroms) or 'invum' (inverse microns).
out : np.ndarray, optional
If specified, store output values in this array.
Returns
-------
Extinction in magnitudes at each input wavelength.
"""
cdef:
size_t i
size_t n = wave.shape[0]
double a = 0.0
double b = 0.0
if out is None:
out = np.empty(n, dtype=np.float64)
else:
assert out.shape == wave.shape
assert out.dtype == np.float64
cdef scalar_func convert_wave
if unit == 'aa':
convert_wave = &aa_to_invum
elif unit == 'invum':
convert_wave = &noop
else:
raise ValueError("unrecognized unit")
cdef double[:] out_view = out
for i in range(n):
out_view[i] = a_v * calzetti00_invum(convert_wave(wave[i]), r_v)
return out
# ------------------------------------------------------------------------------
# convenience functions for applying/removing extinction to/from flux
# values, optionally in-place. It turns out that pure Python is about as
# fast as C here.
def apply(extinction, flux, inplace=False):
"""apply(extinction, flux, inplace=False)
Apply extinction to flux values.
This is a convenience function to perform "reddening" of
flux values. It simply performs ``flux * 10**(-0.4 * extinction)``:
flux is decreased (for positive extinction values).
Parameters
----------
extinction : numpy.ndarray (1-d)
Extinction in magnitudes. (Positive extinction values decrease flux
values.)
flux : numpy.ndarray
Flux values.
inplace : bool, optional
Whether to perform the operation in-place on the flux array. If True,
the return value is a reference to the input flux array.
Returns
-------
new_flux : numpy.ndarray (1-d)
Flux values with extinction applied.
"""
trans = 10.**(-0.4 * extinction)
if inplace:
flux *= trans
return flux
else:
return flux * trans
# ------------------------------------------------------------------------------
# convenience function for removing extinction from flux values, optionally
# in-place. (It turns out that this isn't really faster than just doing it
# in pure python...)
def remove(extinction, flux, inplace=False):
"""remove(extinction, flux, inplace=False)
Remove extinction from flux values.
This is a convenience function to "deredden" fluxes. It simply performs
``flux * 10**(0.4 * extinction)``: flux is increased (for positive
extinction values).
Parameters
----------
extinction : numpy.ndarray (1-d)
Extinction in magnitudes.
flux : numpy.ndarray
Flux values.
inplace : bool, optional
Whether to perform the operation in-place on the flux array. If True,
the return value is a reference to the input flux array.
Returns
-------
new_flux : numpy.ndarray (1-d)
Flux values with extinction removed.
"""
trans = 10.**(0.4 * extinction)
if inplace:
flux *= trans
return flux
else:
return flux * trans
|