1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
|
"""Interfaces to data from specific instruments
"""
import logging
import math
import re
from collections.abc import Iterable
from copy import copy
from warnings import warn
import numpy as np
import pandas as pd
from .exceptions import SourceNameError
from .reader import DataCollection, by_id, by_index
from .read_machinery import DataChunk, roi_shape, split_trains
from .writer import FileWriter
from .write_cxi import XtdfCXIWriter, JUNGFRAUCXIWriter
__all__ = [
'AGIPD1M',
'AGIPD500K',
'DSSC1M',
'LPD1M',
'JUNGFRAU',
'identify_multimod_detectors',
]
log = logging.getLogger(__name__)
MAX_PULSES = 2700
NO_PULSE_ID = 9999
def multimod_detectors(detector_cls):
"""
Decorator for multimod detector classes (e.g. AGIPD/LPD/JUNGFRAU)
to store them in a list 'multimod_detectors.list' and their names
in 'multimod_detectors.names'.
Parameters
----------
detector_cls: class
Decorated detector class to append to the list.
Returns
-------
detector_cls: class
Unmodified decorated detector class.
"""
multimod_detectors.list = getattr(multimod_detectors, 'list', list())
multimod_detectors.list.append(detector_cls)
multimod_detectors.names = getattr(multimod_detectors, 'names', list())
multimod_detectors.names.append(detector_cls.__name__)
return detector_cls
def _check_pulse_selection(pulses):
"""Check and normalise a pulse selection"""
if not isinstance(pulses, (by_id, by_index)):
pulses = by_index[pulses]
val = pulses.value
if isinstance(pulses.value, slice):
# Ensure start/stop/step are all real numbers
start = val.start if (val.start is not None) else 0
stop = val.stop if (val.stop is not None) else MAX_PULSES
step = val.step if (val.step is not None) else 1
if not all(isinstance(s, int) for s in (start, stop, step)):
raise TypeError("Pulse selection slice must use integers or None")
if step < 1:
raise ValueError("Pulse selection slice must have positive step")
if (start < 0) or (stop < 0):
raise NotImplementedError("Negative pulse indices not supported")
return type(pulses)(slice(start, stop, step))
# Convert everything except slices to numpy arrays
elif isinstance(pulses.value, int):
val = np.array([val], dtype=np.uint64)
else:
val = np.asarray(val, dtype=np.uint64)
if (val < 0).any():
if isinstance(pulses, by_id):
raise ValueError("Pulse IDs cannot be negative")
else:
raise NotImplementedError("Negative pulse indices not supported")
return type(pulses)(val)
def _select_pulse_ids(pulses, data_pulse_ids):
"""Select pulses by ID across a chunk of trains
Returns a boolean array of which entries in data_pulse_ids match.
"""
if isinstance(pulses.value, slice):
s = pulses.value
desired = np.arange(s.start, s.stop, step=s.step, dtype=np.uint64)
else:
desired = pulses.value
return np.isin(data_pulse_ids, desired)
def _out_array(shape, dtype, fill_value=None):
if fill_value is None:
fill_value = np.nan if dtype.kind == 'f' else 0
fill_value = dtype.type(fill_value)
# Zeroed memory can be allocated faster than explicitly writing zeros
if fill_value == 0:
return np.zeros(shape, dtype=dtype)
else:
return np.full(shape, fill_value, dtype=dtype)
class MultimodDetectorBase:
"""Base class for detectors made of several modules as separate data sources
"""
_det_name_pat = r'([^/]+)'
_source_raw_pat = r'/DET/(?P<modno>\d+)CH'
_source_corr_pat = r'/CORR/(?P<modno>\d+)CH'
# Override in subclass
_main_data_key = '' # Key to use for checking data counts match
_mask_data_key = ''
_frames_per_entry = 1 # Override if separate pulse dimension in files
_modnos_start_at = 0 # Override if module numbers start at 1 (JUNGFRAU)
module_shape = (0, 0)
n_modules = 0
def __init__(self, data: DataCollection, detector_name=None, modules=None,
*, min_modules=1, raw=None):
if detector_name is None:
detector_name = self._find_detector_name(data)
if min_modules <= 0:
raise ValueError("min_modules must be a positive integer, not "
f"{min_modules!r}")
source_to_modno = self._identify_sources(data, detector_name, modules, raw=raw)
data = data.select([(src, '*') for src in source_to_modno])
self.detector_name = detector_name
self.source_to_modno = source_to_modno
# pandas' missing-data handling converts the data to floats if there
# are any gaps - so fill them with 0s and convert back to uint64.
mod_data_counts = pd.DataFrame({
src: data.get_data_counts(src, self._main_data_key)
for src in source_to_modno
}).fillna(0).astype(np.uint64)
# Within any train, all modules should have same count or zero
frame_counts = pd.Series(0, index=mod_data_counts.index, dtype=np.uint64)
for tid, data_counts in mod_data_counts.iterrows():
count_vals = set(data_counts) - {0}
if len(count_vals) > 1:
raise ValueError(
f"Inconsistent frame counts for train {tid}: {count_vals}"
)
elif count_vals:
frame_counts[tid] = count_vals.pop()
self.data = self._select_trains(data, mod_data_counts, min_modules)
# This should be a reversible 1-to-1 mapping
self.modno_to_source = {m: s for (s, m) in source_to_modno.items()}
assert len(self.modno_to_source) == len(self.source_to_modno)
self.frame_counts = frame_counts[self.data.train_ids]
self.train_ids_perframe = np.repeat(
self.frame_counts.index.values, self.frame_counts.values.astype(np.intp)
)
# If we add extra instance attributes, check whether they should be
# updated in .select_trains() below.
def __getitem__(self, item):
return MultimodKeyData(self, item)
def __contains__(self, item):
return all(item in self.data[s] for s in self.source_to_modno)
def masked_data(self, key=None, *, mask_bits=None, masked_value=np.nan):
"""Combine corrected data with the mask in the files
This provides an interface similar to ``det['data.adc']``, but masking
out pixels with the mask from the correction pipeline.
Parameters
----------
key: str
The data key to look at, by default the main data key of the detector
(e.g. 'data.adc').
mask_bits: int or list of ints
Reasons to exclude pixels, as a bitmask or a list of integers.
By default, all types of bad pixel are masked out. See the possible
values at: https://extra.readthedocs.io/en/latest/calibration/#extra.calibration.BadPixels
masked_value: int, float
The replacement value to use for masked data. By default this is NaN.
"""
key = key or self._main_data_key
if self._mask_data_key not in self:
raise RuntimeError(
f"This data doesn't include a mask ({self._mask_data_key}). "
f"You might be using raw instead of corrected data."
)
if isinstance(mask_bits, Iterable):
mask_bits = self._combine_bitfield(mask_bits)
return DetectorMaskedKeyData(
self, key, mask_key=self._mask_data_key,
mask_bits=mask_bits, masked_value=masked_value
)
@staticmethod
def _combine_bitfield(ints):
res = 0
for i in ints:
res |= i
return res
@classmethod
def _find_detector_names(cls, data):
# Find sources matching the pattern (raw or proc) for this detector type
raw_re = re.compile(f'(?P<detname>{cls._det_name_pat}){cls._source_raw_pat}')
corr_re = re.compile(f'(?P<detname>{cls._det_name_pat}){cls._source_corr_pat}')
detector_names = set()
for source in data.instrument_sources:
if m := raw_re.match(source) or corr_re.match(source):
detector_names.add(m['detname'])
return detector_names
@classmethod
def _find_detector_name(cls, data):
detector_names = cls._find_detector_names(data)
# We want exactly 1 source
if not detector_names:
raise SourceNameError(f'{cls._det_name_pat}({cls._source_raw_pat}|{cls._source_corr_pat})')
elif len(detector_names) > 1:
names_s = ', '.join(repr(n) for n in sorted(detector_names))
raise ValueError(
f"Multiple detectors found in the data: {names_s}. "
f"Pass detector_name to {cls.__name__}() to pick one."
)
return detector_names.pop()
@staticmethod
def _source_matches(data, pat):
source_re = re.compile(pat)
for source in data.instrument_sources:
m = source_re.match(source)
if m:
yield source, int(m.group('modno'))
@classmethod
def _data_is_raw(cls, data, source: str):
# For most detectors, raw data is uint16 & corrected is float32.
# Overridden for AGIPD, where output dtype is configurable.
kd = data[source, cls._main_data_key]
return np.issubdtype(kd.dtype, np.integer)
@classmethod
def _identify_sources(cls, data, detector_name, modules=None, raw=None):
if raw is True:
pat = re.escape(detector_name) + cls._source_raw_pat
source_to_modno = dict(cls._source_matches(data, pat))
if not all(cls._data_is_raw(data, s) for s in source_to_modno):
# Older corrected data used the same names as raw
raise ValueError(
f"Raw data was not found: {detector_name}/DET/... sources "
f"are from corrected data"
)
else:
# Prefer corrected data
pat = re.escape(detector_name) + cls._source_corr_pat
source_to_modno = dict(cls._source_matches(data, pat))
if not source_to_modno:
# Data named like raw may also be proc
pat = re.escape(detector_name) + cls._source_raw_pat
source_to_modno = dict(cls._source_matches(data, pat))
if (raw is False) and any(cls._data_is_raw(data, s) for s in source_to_modno):
raise SourceNameError(f'{detector_name}/CORR/...')
# raw=None -> legacy behaviour: prefer corrected but allow raw
if modules is not None:
source_to_modno = {s: n for (s, n) in source_to_modno.items()
if n in modules}
if not source_to_modno:
dc = '(DET|CORR)' if raw is None else 'DET' if raw else 'CORR'
raise SourceNameError(f'{detector_name}/{dc}/...')
return source_to_modno
@classmethod
def _select_trains(cls, data, mod_data_counts, min_modules):
modules_present = (mod_data_counts > 0).sum(axis=1)
mod_data_counts = mod_data_counts[modules_present >= min_modules]
ntrains = len(mod_data_counts)
if not ntrains:
raise ValueError("No data found with >= {} modules present"
.format(min_modules))
log.info("Found %d trains with data for at least %d modules",
ntrains, min_modules)
train_ids = mod_data_counts.index.values
return data.select_trains(by_id[train_ids])
@staticmethod
def _split_align_chunk(chunk, target_train_ids: np.ndarray, length_limit=np.inf):
"""
Split up a source chunk to align with parts of a joined array.
Chunk points to contiguous source data, but if this misses a train,
it might not correspond to a contiguous region in the output. This
yields pairs of (target_slice, source_slice) describing chunks that can
be copied/mapped to a similar block in the output.
Parameters
----------
chunk: read_machinery::DataChunk
Reference to a contiguous chunk of data to be mapped.
target_train_ids: numpy.ndarray
Train ID index for target array to align chunk data to. Train IDs may
occur more than once in here.
length_limit: int
Maximum length of slices (stop - start) to yield. Larger slices will
be split up into several pieces. Unlimited by default.
"""
# Expand the list of train IDs to one per frame
chunk_tids = np.repeat(chunk.train_ids, chunk.counts.astype(np.intp))
chunk_match_start = int(chunk.first)
while chunk_tids.size > 0:
# Look up where the start of this chunk fits in the target
tgt_start = (target_train_ids == chunk_tids[0]).nonzero()[0][0]
target_tids = target_train_ids[
tgt_start : tgt_start + len(chunk_tids)
]
assert target_tids.shape == chunk_tids.shape, \
f"{target_tids.shape} != {chunk_tids.shape}"
assert target_tids[0] == chunk_tids[0], \
f"{target_tids[0]} != {chunk_tids[0]}"
# How much of this chunk can be mapped in one go?
mismatches = (chunk_tids != target_tids).nonzero()[0]
if mismatches.size > 0:
n_match = mismatches[0]
else:
n_match = len(chunk_tids)
# Split the matched data if needed for length_limit
n_batches = max(math.ceil(n_match / length_limit), 1)
for i in range(n_batches):
start = i * n_match // n_batches
stop = (i + 1) * n_match // n_batches
yield (slice(tgt_start + start, tgt_start + stop),
slice(chunk_match_start + start, chunk_match_start + stop))
# Prepare remaining data in the chunk for the next match
chunk_match_start += n_match
chunk_tids = chunk_tids[n_match:]
@property
def train_ids(self):
return self.data.train_ids
@property
def train_id_chunks(self):
# Used to be used internally. Kept temporarily in case anyone else used it.
warn(
"detector.train_id_chunks is likely to be removed in the future. "
"Please contact da-support@xfel.eu if you're using it",
stacklevel=2
)
train_id_arr = np.asarray(self.data.train_ids)
split_indices = np.where(np.diff(train_id_arr) != 1)[0] + 1
return np.split(train_id_arr, split_indices)
@property
def train_id_to_ix(self):
# Used to be used internally. Kept temporarily in case anyone else used it.
warn(
"detector.train_id_to_ix is likely to be removed in the future. "
"Please contact da-support@xfel.eu if you're using it",
stacklevel=2
)
# Cumulative sum gives the end of each train, subtract to get start
return self.frame_counts.cumsum() - self.frame_counts
@property
def frames_per_train(self):
counts = set(self.frame_counts.unique()) - {0}
if len(counts) > 1:
raise ValueError(f"Varying number of frames per train: {counts}")
return counts.pop() * self._frames_per_entry
def __repr__(self):
# Show raw/proc
det = type(self).__name__
raw = all(self._data_is_raw(self.data, s) for s in self.source_to_modno)
rp = 'raw' if raw else 'proc'
return (f"<{det}: Data interface for detector {self.detector_name!r} "
f"- {rp} data with {len(self.source_to_modno)} modules>")
def select_trains(self, trains):
"""Select a subset of trains from this data as a new object.
Slice trains by position within this data::
sel = det.select_trains(np.s_[:5])
Or select trains by train ID, with a slice or a list::
from extra_data import by_id
sel1 = det.select_trains(by_id[142844490 : 142844495])
sel2 = det.select_trains(by_id[[142844490, 142844493, 142844494]])
"""
# Using a copy to bypass the source & train checks in __init__
res = copy(self)
res.data = self.data.select_trains(trains)
res.frame_counts = self.frame_counts[res.data.train_ids]
res.train_ids_perframe = np.repeat(
res.frame_counts.index.values, res.frame_counts.values.astype(np.intp)
)
return res
def split_trains(self, parts=None, trains_per_part=None, frames_per_part=None):
"""Split this data into chunks with a fraction of the trains each.
At least one of *parts*, *trains_per_part* or *frames_per_part* must be
specified. You can pass any combination of these.
Parameters
----------
parts: int
How many parts to split the data into. If trains_per_part is also
specified, this is a minimum, and it may make more parts.
It may also make fewer if there are fewer trains in the data.
trains_per_part: int
A maximum number of trains in each part. Parts will often have
fewer trains than this.
frames_per_part: int
A target number of frames in each part. Each chunk should have up
to this many frames, but chunks always contain complete trains,
so if this is less than one train, you may get single train chunks
with more frames. When ``frames_per_part`` is used, the final
chunk may be much smaller than the others.
"""
if {parts, trains_per_part, frames_per_part} == {None}:
raise ValueError(
"One of parts, trains_per_part, frames_per_part must be specified"
)
if frames_per_part is None:
for s in split_trains(len(self.train_ids), parts, trains_per_part):
yield self.select_trains(s)
else:
# frames_per_part was specified. We don't assume that the number
# of frames per train is constant, so we'll iterate over trains
# and cut off each chunk when we reach the relevant number.
if not self.train_ids:
return # No data to split
if trains_per_part is None:
trains_per_part = np.inf
if parts:
trains_per_part = min(trains_per_part, len(self.train_ids) // parts)
chunk_start = 0
ntrains = 1
nentries = self.frame_counts.iloc[0]
for frame_ct in self.frame_counts.iloc[1:]:
ntrains += 1
nentries += frame_ct
if (ntrains > trains_per_part) or (nentries * self._frames_per_entry > frames_per_part):
# We've got a full chunk
chunk_end = chunk_start + ntrains - 1
yield self.select_trains(np.s_[chunk_start:chunk_end])
chunk_start = chunk_end
ntrains = 1
nentries = frame_ct
# There will always be at least the last train left to yield
yield self.select_trains(np.s_[chunk_start:])
def get_array(self, key, *, fill_value=None, roi=(), astype=None):
"""Get a labelled array of detector data
Parameters
----------
key: str
The data to get, e.g. 'image.data' for pixel values.
fill_value: int or float, optional
Value to use for missing values. If None (default) the fill value
is 0 for integers and np.nan for floats.
roi: tuple
Specify e.g. ``np.s_[10:60, 100:200]`` to select pixels within each
module when reading data. The selection is applied to each individual
module, so it may only be useful when working with a single module.
astype: Type
Data type of the output array. If None (default) the dtype matches the
input array dtype
"""
return self[key].xarray(fill_value=fill_value, roi=roi, astype=astype)
def get_dask_array(self, key, fill_value=None, astype=None):
"""Get a labelled Dask array of detector data
Parameters
----------
key: str
The data to get, e.g. 'image.data' for pixel values.
fill_value: int or float, optional
Value to use for missing values. If None (default) the fill value is 0
for integers and np.nan for floats.
astype: Type
Data type of the output array. If None (default) the dtype matches the
input array dtype
"""
return self[key].dask_array(labelled=True, fill_value=fill_value, astype=astype)
def trains(self, require_all=True):
"""Iterate over trains for detector data.
Parameters
----------
require_all: bool
If True (default), skip trains where any of the selected detector
modules are missing data.
Yields
------
train_data: dict
A dictionary mapping key names (e.g. ``image.data``) to labelled
arrays.
"""
return MPxDetectorTrainIterator(self, require_all=require_all)
def data_availability(self, module_gaps=False):
"""Get an array indicating what image data is available
Returns a boolean array (modules, entries), True where a module has data
for a given train, False for missing data.
"""
return self[self._main_data_key].data_availability(module_gaps)
class XtdfDetectorBase(MultimodDetectorBase):
"""Common machinery for a group of detectors with similar data format
AGIPD, DSSC & LPD all store pulse-resolved data in an "image" group,
with both trains and pulses along the first dimension. This allows a
different number of frames to be stored for each train, which makes
access more complicated.
"""
n_modules = 16
_main_data_key = 'image.data'
_mask_data_key = 'image.mask'
def __getitem__(self, item):
if item.startswith('image.'):
return XtdfImageMultimodKeyData(self, item)
return super().__getitem__(item)
def masked_data(self, key=None, *, mask_bits=None, masked_value=np.nan):
"""Combine corrected data with the mask in the files
This provides an interface similar to ``det['image.data']``, but masking
out pixels with the mask from the correction pipeline.
Parameters
----------
key: str
The data key to look at, by default the main data key of the detector
(e.g. 'image.data').
mask_bits: int or list of ints
Reasons to exclude pixels, as a bitmask or a list of integers.
By default, all types of bad pixel are masked out.
masked_value: int, float
The replacement value to use for masked data. By default this is NaN.
"""
key = key or self._main_data_key
assert key.startswith('image.')
if self._mask_data_key not in self:
raise RuntimeError(
f"This data doesn't include a mask ({self._mask_data_key}). "
f"You might be using raw instead of corrected data."
)
if isinstance(mask_bits, Iterable):
mask_bits = self._combine_bitfield(mask_bits)
return XtdfMaskedKeyData(
self, key, mask_key=self._mask_data_key,
mask_bits=mask_bits, masked_value=masked_value
)
# Several methods below are overridden in LPD1M for parallel gain mode
@staticmethod
def _select_pulse_indices(pulses, counts):
"""Select pulses by index across a chunk of trains
Returns a boolean array of frames to include.
"""
sel_frames = np.zeros(counts.sum(), dtype=np.bool_)
cursor = 0
for count in counts:
sel_in_train = pulses.value
if isinstance(sel_in_train, np.ndarray):
# Ignore any indices after the end of the train
sel_in_train = sel_in_train[sel_in_train < count]
sel_frames[cursor:cursor + count][sel_in_train] = 1
cursor += count
return sel_frames
def _make_image_index(self, tids, inner_ids, inner_name='pulse'):
"""
Prepare indices for data per inner coordinate.
Parameters
----------
tids: np.array
Train id repeated for each inner coordinate.
inner_ids: np.array
Array of inner coordinate values.
inner_name: string
Name of the inner coordinate.
Returns
-------
pd.MultiIndex
MultiIndex of 'train_ids' x 'inner_ids'.
"""
# Overridden in LPD1M for parallel gain mode
return pd.MultiIndex.from_arrays(
[tids, inner_ids], names=['train', inner_name]
)
def _read_inner_ids(self, field='pulseId'):
"""Read pulse/cell IDs into a 2D array (frames, modules)
Overridden by LPD1M for parallel gain mode.
"""
inner_ids = np.full((
self.frame_counts.sum(), self.n_modules), NO_PULSE_ID, dtype=np.uint64
)
for source, modno in self.source_to_modno.items():
for chunk in self.data._find_data_chunks(source, 'image.' + field):
dset = chunk.dataset
unwanted_dim = (dset.ndim > 1) and (dset.shape[1] == 1)
for tgt_slice, chunk_slice in self._split_align_chunk(
chunk, self.train_ids_perframe
):
# Select the matching data and add it to pulse_ids
# In some cases, there's an extra dimension of length 1.
matched = chunk.dataset[chunk_slice]
if unwanted_dim:
matched = matched[:, 0]
inner_ids[tgt_slice, modno] = matched
return inner_ids
def _collect_inner_ids(self, field='pulseId'):
"""
Gather pulse/cell ID labels for all modules and check consistency.
Raises
------
Exception:
Some data has no pulse ID values for any module.
Exception:
Inconsistent pulse IDs between detector modules.
Returns
-------
inner_ids: np.array
Array of pulse/cell IDs per frame common for all detector modules.
"""
inner_ids = self._read_inner_ids(field)
# Sanity checks on pulse IDs
inner_ids_min: np.ndarray = inner_ids.min(axis=1)
if (inner_ids_min == NO_PULSE_ID).any():
raise Exception(f"Failed to find {field} for some data")
inner_ids[inner_ids == NO_PULSE_ID] = 0
if (inner_ids_min != inner_ids.max(axis=1)).any():
raise Exception(f"Inconsistent {field} for different modules")
# Pulse IDs make sense. Drop the modules dimension, giving one
# pulse ID for each frame.
return inner_ids_min
def get_array(self, key, pulses=np.s_[:], unstack_pulses=True, *,
fill_value=None, subtrain_index='pulseId', roi=(),
astype=None):
"""Get a labelled array of detector data
Parameters
----------
key: str
The data to get, e.g. 'image.data' for pixel values.
pulses: slice, array, by_id or by_index
Select the pulses to include from each train. by_id selects by pulse
ID, by_index by index within the data being read. The default includes
all pulses. Only used for per-pulse data.
unstack_pulses: bool
Whether to separate train and pulse dimensions.
fill_value: int or float, optional
Value to use for missing values. If None (default) the fill value is 0
for integers and np.nan for floats.
subtrain_index: str
Specify 'pulseId' (default) or 'cellId' to label the frames recorded
within each train. Pulse ID should allow this data to be matched with
other devices, but depends on how the detector was manually configured
when the data was taken. Cell ID refers to the memory cell used for
that frame in the detector hardware.
roi: tuple
Specify e.g. ``np.s_[10:60, 100:200]`` to select pixels within each
module when reading data. The selection is applied to each individual
module, so it may only be useful when working with a single module.
For AGIPD raw data, each module records a frame as a 3D array with 2
entries on the first dimension, for data & gain information, so
``roi=np.s_[0]`` will select only the data part of each frame.
astype: Type
data type of the output array. If None (default) the dtype matches the
input array dtype
"""
if subtrain_index not in {'pulseId', 'cellId'}:
raise ValueError("subtrain_index must be 'pulseId' or 'cellId'")
if not isinstance(roi, tuple):
roi = (roi,)
if key.startswith('image.'):
return self[key].select_pulses(pulses).xarray(
fill_value=fill_value, roi=roi, subtrain_index=subtrain_index,
astype=astype, unstack_pulses=unstack_pulses,
)
else:
return super().get_array(
key, fill_value=fill_value, roi=roi, astype=astype
)
def get_dask_array(self, key, subtrain_index='pulseId', fill_value=None,
astype=None):
"""Get a labelled Dask array of detector data
Dask does lazy, parallelised computing, and can work with large data
volumes. This method doesn't immediately load the data: that only
happens once you trigger a computation.
Parameters
----------
key: str
The data to get, e.g. 'image.data' for pixel values.
subtrain_index: str, optional
Specify 'pulseId' (default) or 'cellId' to label the frames recorded
within each train. Pulse ID should allow this data to be matched with
other devices, but depends on how the detector was manually configured
when the data was taken. Cell ID refers to the memory cell used for
that frame in the detector hardware.
fill_value: int or float, optional
Value to use for missing values. If None (default) the fill value is 0
for integers and np.nan for floats.
astype: Type, optional
data type of the output array. If None (default) the dtype matches the
input array dtype
"""
from xarray import DataArray
if subtrain_index not in {'pulseId', 'cellId'}:
raise ValueError("subtrain_index must be 'pulseId' or 'cellId'")
if key.startswith('image.'):
arr = self[key].dask_array(
labelled=True, subtrain_index=subtrain_index,
fill_value=fill_value, astype=astype
)
# Preserve the quirks of this method before refactoring
if self[key]._extraneous_dim:
arr = arr.expand_dims('tmp_name', axis=2)
frame_idx = arr.indexes['train_pulse'].set_names(
['trainId', subtrain_index], level=[0, -1]
)
dims = ['module', 'train_pulse'] + [f'dim_{i}' for i in range(arr.ndim - 2)]
return DataArray(arr.data, dims=dims, coords={
'train_pulse': frame_idx, 'module': arr.indexes['module'],
})
else:
return super().get_dask_array(key, fill_value=fill_value, astype=astype)
def trains(self, pulses=np.s_[:], require_all=True):
"""Iterate over trains for detector data.
Parameters
----------
pulses: slice, array, by_index or by_id
Select which pulses to include for each train.
The default is to include all pulses.
require_all: bool
If True (default), skip trains where any of the selected detector
modules are missing data.
Yields
------
train_data: dict
A dictionary mapping key names (e.g. ``image.data``) to labelled
arrays.
"""
return MPxDetectorTrainIterator(self, pulses, require_all=require_all)
def write_virtual_cxi(self, filename, fillvalues=None):
"""Write a virtual CXI file to access the detector data.
The virtual datasets in the file provide a view of the detector
data as if it was a single huge array, but without copying the data.
Creating and using virtual datasets requires HDF5 1.10.
Parameters
----------
filename: str
The file to be written. Will be overwritten if it already exists.
fillvalues: dict, optional
keys are datasets names (one of: data, gain, mask) and associated
fill value for missing data (default is np.nan for float arrays and
zero for integer arrays)
"""
XtdfCXIWriter(self).write(filename, fillvalues=fillvalues)
def write_frames(self, filename, trains, pulses):
"""Write selected detector frames to a new EuXFEL HDF5 file
trains and pulses should be 1D arrays of the same length, containing
train IDs and pulse IDs (corresponding to the pulse IDs recorded by
the detector). i.e. (trains[i], pulses[i]) identifies one frame.
"""
if (trains.ndim != 1) or (pulses.ndim != 1):
raise ValueError("trains & pulses must be 1D arrays")
inc_tp_ids = zip_trains_pulses(trains, pulses)
writer = FramesFileWriter(filename, self.data, inc_tp_ids)
try:
writer.write()
finally:
writer.file.close()
def zip_trains_pulses(trains, pulses):
"""Combine two similar arrays of train & pulse IDs as one struct array
"""
if trains.shape != pulses.shape:
raise ValueError(
f"Train & pulse arrays don't match ({trains.shape} != {pulses.shape})"
)
res = np.zeros(trains.shape, dtype=np.dtype([
('trainId', np.uint64), ('pulseId', np.uint64)
]))
res['trainId'] = trains
res['pulseId'] = pulses
return res
class MultimodKeyData:
def __init__(self, det: MultimodDetectorBase, key):
self.det = det
self.key = key
self.modno_to_keydata = {
m: det.data[s, key] for (m, s) in det.modno_to_source.items()
}
def _init_kwargs(self): # Extended in subclasses
return dict(det=self.det, key=self.key)
@property
def train_ids(self):
return self.det.train_ids
def train_id_coordinates(self):
return np.array(self.det.train_ids)
@property
def modules(self):
return sorted(self.modno_to_keydata)
@property
def _eg_keydata(self):
return self.modno_to_keydata[min(self.modno_to_keydata)]
@property
def ndim(self):
return self._eg_keydata.ndim + 1
def buffer_shape(self, module_gaps=False, roi=()):
"""Get the array shape for this data
If *module_gaps* is True, include space for modules which are missing
from the data. *roi* may be a tuple of slices defining a region of
interest on the inner dimensions of the data.
"""
module_dim = self.det.n_modules if module_gaps else len(self.modno_to_keydata)
return ((module_dim, len(self.train_ids))
# Shape of 1 frame for 1 module with the ROI applied:
+ roi_shape(self._eg_keydata.entry_shape, roi))
@property
def shape(self):
return self.buffer_shape()
@property
def dimensions(self):
return ['module', 'trainId'] + ['dim_%d' % i for i in range(self.ndim - 2)]
@property
def dtype(self):
return self._eg_keydata.dtype
# For select_trains() & split_trains() to work correctly with subclasses
def _with_selected_det(self, det_selected):
kw = self._init_kwargs()
kw.update(det=det_selected)
return type(self)(**kw)
def select_trains(self, trains):
return self._with_selected_det(self.det.select_trains(trains))
def __getitem__(self, item):
return self.select_trains(item)
__iter__ = None # Disable iteration
def split_trains(self, parts=None, trains_per_part=None, frames_per_part=None):
for det_split in self.det.split_trains(parts, trains_per_part, frames_per_part):
yield self._with_selected_det(det_split)
def ndarray(self, *, fill_value=None, out=None, roi=(), astype=None, module_gaps=False):
"""Get data as a plain NumPy array with no labels"""
train_ids = np.asarray(self.det.train_ids)
out_shape = self.buffer_shape(module_gaps, roi)
if out is None:
dtype = self._eg_keydata.dtype if astype is None else np.dtype(astype)
out = _out_array(out_shape, dtype, fill_value=fill_value)
elif out.shape != out_shape:
raise ValueError(f'requires output array of shape {out_shape}')
for i, (modno, kd) in enumerate(sorted(self.modno_to_keydata.items())):
mod_ix = (modno - self.det._modnos_start_at) if module_gaps else i
for chunk in kd._data_chunks:
for tgt_slice, chunk_slice in self.det._split_align_chunk(chunk, train_ids):
chunk.dataset.read_direct(
out[mod_ix, tgt_slice], source_sel=(chunk_slice,) + roi
)
return out
def _wrap_xarray(self, arr):
from xarray import DataArray
coords = {'module': self.modules, 'trainId': self.train_id_coordinates()}
return DataArray(arr, dims=self.dimensions, coords=coords)
def xarray(self, *, fill_value=None, roi=(), astype=None):
arr = self.ndarray(fill_value=fill_value, roi=roi, astype=astype)
return self._wrap_xarray(arr)
def dask_array(self, *, labelled=False, fill_value=None, astype=None):
from dask.delayed import delayed
from dask.array import concatenate, from_delayed
entry_size = (self.dtype.itemsize *
len(self.modno_to_keydata) * np.prod(self._eg_keydata.entry_shape)
)
# Aim for 1GB chunks, with an arbitrary maximum of 256 trains
split = self.split_trains(frames_per_part=min(1024 ** 3 / entry_size, 256))
arr = concatenate([from_delayed(
delayed(c.ndarray)(fill_value=fill_value, astype=astype),
shape=c.shape, dtype=self.dtype
) for c in split], axis=1)
if labelled:
return self._wrap_xarray(arr)
return arr
def data_availability(self, module_gaps=False):
"""Get an array indicating what data is available
Returns a boolean array (modules, entries), True where a module has data
for a given train, False for missing data.
"""
train_ids = self.train_id_coordinates()
module_dim = self.det.n_modules if module_gaps else len(self.modno_to_keydata)
out = np.zeros((module_dim, len(train_ids)), dtype=np.bool_)
for i, (modno, kd) in enumerate(sorted(self.modno_to_keydata.items())):
mod_ix = (modno - self.det._modnos_start_at) if module_gaps else i
for chunk in kd._data_chunks:
for tgt_slice, _ in self.det._split_align_chunk(chunk, train_ids):
out[mod_ix, tgt_slice] = True
return out
class DetectorMaskedKeyData(MultimodKeyData):
def __init__(self, *args, mask_key, mask_bits, masked_value, **kwargs):
super().__init__(*args, **kwargs)
self._mask_key = mask_key
self._mask_bits = mask_bits
self._masked_value = masked_value
def __repr__(self):
return f"<Masked {self.key!r} detector data for {len(self.modules)} modules>"
def _init_kwargs(self):
kw = super()._init_kwargs()
kw.update(
mask_key=self._mask_key,
mask_bits=self._mask_bits,
masked_value=self._masked_value,
)
return kw
# Overridden for XTDF data to accommodate pulse selection
def _mask_keydata(self):
return self.det[self._mask_key]
def _load_mask(self, module_gaps):
"""Load the mask & convert to boolean (True for bad pixels)"""
mask_data = self._mask_keydata().ndarray(module_gaps=module_gaps)
if self._mask_bits is None:
return mask_data != 0 # Skip extra temporary array from &
else:
return (mask_data & self._mask_bits) != 0
def ndarray(self, *, module_gaps=False, **kwargs):
"""Load data into a NumPy array & apply the mask"""
# Load mask first: it shrinks from 4 bytes/px to 1, so peak memory use
# is lower than loading it after the data
mask = self._load_mask(module_gaps=module_gaps)
data = super().ndarray(module_gaps=module_gaps, **kwargs)
data[mask] = self._masked_value
return data
class XtdfImageMultimodKeyData(MultimodKeyData):
_sel_frames_cached = None
det: XtdfDetectorBase
def __init__(self, det: XtdfDetectorBase, key, pulse_sel=by_index[0:MAX_PULSES:1]):
super().__init__(det, key)
self._pulse_sel = pulse_sel
entry_shape = self._eg_keydata.entry_shape
self._extraneous_dim = (len(entry_shape) >= 1) and (entry_shape[0] == 1)
def _init_kwargs(self):
kw = super()._init_kwargs()
kw.update(pulse_sel=self._pulse_sel)
return kw
@property
def ndim(self):
return super().ndim - (1 if self._extraneous_dim else 0)
def _all_pulses(self):
psv = self._pulse_sel.value
return isinstance(psv, slice) and psv == slice(0, MAX_PULSES, 1)
def buffer_shape(self, module_gaps=False, roi=()):
"""Get the array shape for this data
If *module_gaps* is True, include space for modules which are missing
from the data. *roi* may be a tuple of slices defining a region of
interest on the inner dimensions of the data.
"""
module_dim = self.det.n_modules if module_gaps else len(self.modno_to_keydata)
# len(self.train_id_coordinates()), but avoids allocating extra arrays
if self._all_pulses():
nframes_sel = len(self.det.train_ids_perframe)
else:
nframes_sel = int(self._sel_frames.sum())
entry_shape = self._eg_keydata.entry_shape
if self._extraneous_dim:
entry_shape = entry_shape[1:]
return (module_dim, nframes_sel) + roi_shape(entry_shape, roi)
@property
def shape(self):
return self.buffer_shape()
def train_id_coordinates(self):
# XTDF 'image' group can have >1 entry per train
a = self.det.train_ids_perframe
# Only allocate sel_frames array if we need it:
if not self._all_pulses():
a = a[self._sel_frames]
else:
a = a.copy() # So you can't accidentally modify the internal array
return a
def pulse_id_coordinates(self):
"""Get an array of pulse IDs per-frame for this data"""
return self.det._collect_inner_ids('pulseId')
def cell_id_coordinates(self):
"""Get an array of memory cell IDs per-frame for this data"""
return self.det._collect_inner_ids('cellId')
@property
def dimensions(self):
ndim_inner = self.ndim - 2
# TODO: this assumes we can tell what the axes are just from the
# number of dimensions. Works for the data we've seen, but we
# should look for a more reliable way.
if ndim_inner == 3:
# image.data in raw data
entry_dims = ['data_gain', 'slow_scan', 'fast_scan']
elif ndim_inner == 2:
# image.data, image.gain, image.mask in calibrated data
entry_dims = ['slow_scan', 'fast_scan']
else:
# Everything else seems to be 1D, but just in case
entry_dims = [f'dim_{i}' for i in range(ndim_inner)]
return ['module', 'train_pulse'] + entry_dims
def select_pulses(self, pulses):
kw = self._init_kwargs()
kw.update(pulse_sel=_check_pulse_selection(pulses))
return type(self)(**kw)
@property
def _sel_frames(self):
if self._sel_frames_cached is None:
p = self._pulse_sel
if isinstance(p, by_index):
if self._all_pulses():
s = np.ones(len(self.det.train_ids_perframe), np.bool_)
else:
s = self.det._select_pulse_indices(p, self.det.frame_counts)
elif isinstance(p, by_id):
pulse_ids = self.det._collect_inner_ids('pulseId')
s = _select_pulse_ids(p, pulse_ids)
else:
raise TypeError(f"Pulse selection should not be {type(p)}")
self._sel_frames_cached = s
return self._sel_frames_cached
def _read_chunk(self, chunk: DataChunk, mod_out, roi):
"""Read per-pulse data from file into an output array (of 1 module)"""
# Limit to 5 GB sections of the dataset at once, so the temporary
# arrays used in the workaround below are not too large.
nbytes_frame = chunk.dataset.dtype.itemsize
for dim in chunk.dataset.shape[1:]:
nbytes_frame *= dim
frame_limit = 5 * (1024 ** 3) // nbytes_frame
for tgt_slice, chunk_slice in self.det._split_align_chunk(
chunk, self.det.train_ids_perframe, length_limit=frame_limit
):
inc_pulses_chunk = self._sel_frames[tgt_slice]
if inc_pulses_chunk.sum() == 0: # No data from this chunk selected
continue
elif inc_pulses_chunk.all(): # All pulses in chunk
chunk.dataset.read_direct(
mod_out[tgt_slice], source_sel=(chunk_slice,) + roi
)
continue
# Read a subset of pulses from the chunk:
# Reading a non-contiguous selection in HDF5 seems to be slow:
# https://forum.hdfgroup.org/t/performance-reading-data-with-non-contiguous-selection/8979
# Except it's fast if you read the data to a matching selection in
# memory (one weird trick).
# So as a workaround, this allocates a temporary array of the same
# shape as the full chunk, reads into it, and then copies the selected
# data to the output array. The extra memory copy is not optimal,
# but it's better than the HDF5 performance issue, at least in some
# realistic cases.
# N.B. tmp should only use memory for the data it contains -
# zeros() uses calloc, so the OS can do virtual memory tricks.
# Don't change this to zeros_like() !
tmp = np.zeros(
shape=inc_pulses_chunk.shape + chunk.dataset.shape[1:],
dtype=chunk.dataset.dtype
)
tmp_sel = np.nonzero(inc_pulses_chunk)[0]
dataset_sel = tmp_sel + chunk_slice.start
chunk.dataset.read_direct(
tmp, source_sel=(dataset_sel,) + roi, dest_sel=(tmp_sel,) + roi,
)
# Where does this data go in the target array?
tgt_start_ix = self._sel_frames[:tgt_slice.start].sum()
tgt_pulse_sel = slice(
tgt_start_ix, tgt_start_ix + inc_pulses_chunk.sum()
)
# Copy data from temp array to output array
np.compress(
inc_pulses_chunk, tmp[np.index_exp[:] + roi],
axis=0, out=mod_out[tgt_pulse_sel]
)
def ndarray(self, *, fill_value=None, out=None, roi=(), astype=None, module_gaps=False):
"""Get an array of per-pulse data (image.*) for xtdf detector"""
out_shape = self.buffer_shape(module_gaps=module_gaps, roi=roi)
if out is None:
dtype = self._eg_keydata.dtype if astype is None else np.dtype(astype)
out = _out_array(out_shape, dtype, fill_value=fill_value)
elif out.shape != out_shape:
raise ValueError(f'requires output array of shape {out_shape}')
reading_view = out.view()
if self._extraneous_dim:
reading_view.shape = out.shape[:2] + (1,) + out.shape[2:]
# Ensure ROI applies to pixel dimensions, not the extra
# dim in raw data (except AGIPD, where it is data/gain)
roi = np.index_exp[:] + roi
for i, (modno, kd) in enumerate(sorted(self.modno_to_keydata.items())):
mod_ix = (modno - self.det._modnos_start_at) if module_gaps else i
for chunk in kd._data_chunks:
self._read_chunk(chunk, reading_view[mod_ix], roi)
return out
def _wrap_xarray(self, arr, subtrain_index='pulseId'):
from xarray import DataArray
inner_ids = self.det._collect_inner_ids(subtrain_index)
index = self.det._make_image_index(
self.det.train_ids_perframe, inner_ids, subtrain_index[:-2]
)[self._sel_frames]
return DataArray(arr, dims=self.dimensions, coords={
'train_pulse': index, 'module': self.modules,
})
def xarray(self, *, pulses=None, fill_value=None, roi=(), astype=None,
subtrain_index='pulseId', unstack_pulses=False):
arr = self.ndarray(fill_value=fill_value, roi=roi, astype=astype)
out = self._wrap_xarray(arr, subtrain_index)
if unstack_pulses:
# Separate train & pulse dimensions, and arrange dimensions
# so that the data is contiguous in memory.
dim_order = ['module'] + out.indexes['train_pulse'].names + self.dimensions[2:]
return out.unstack('train_pulse').transpose(*dim_order)
return out
def dask_array(self, *, labelled=False, subtrain_index='pulseId',
fill_value=None, astype=None, frames_per_chunk=None):
from dask.delayed import delayed
from dask.array import concatenate, from_delayed
entry_size = (self.dtype.itemsize *
len(self.modno_to_keydata) * np.prod(self._eg_keydata.entry_shape)
)
if frames_per_chunk is None:
# Aim for 2GB chunks, with an arbitrary maximum of 1024 frames
frames_per_chunk = min(2 * 1024 ** 3 / entry_size, 1024)
split = self.split_trains(frames_per_part=frames_per_chunk)
arr = concatenate([from_delayed(
delayed(c.ndarray)(fill_value=fill_value, astype=astype),
shape=c.shape, dtype=self.dtype
) for c in split], axis=1)
if labelled:
return self._wrap_xarray(arr, subtrain_index)
return arr
class XtdfMaskedKeyData(DetectorMaskedKeyData, XtdfImageMultimodKeyData):
# Created from xtdf_det.masked_data()
def _mask_keydata(self):
return self.det[self._mask_key].select_pulses(self._pulse_sel)
class FramesFileWriter(FileWriter):
"""Write selected detector frames in European XFEL HDF5 format"""
def __init__(self, path, data, inc_tp_ids):
super().__init__(path, data)
self.inc_tp_ids = inc_tp_ids
def _guess_number_of_storing_entries(self, source, key):
if source in self.data.instrument_sources and key.startswith("image."):
# Start with an empty dataset, grow it as we add each file
return 0
else:
return super()._guess_number_of_storing_entries(source, key)
def copy_image_data(self, source, keys):
"""Copy selected frames of the detector image data"""
frame_tids_piecewise = []
src_files = sorted(
self.data[source].files,
key=lambda fa: fa.train_ids[0]
)
for fa in src_files:
_, counts = fa.get_index(source, 'image')
file_tids = np.repeat(fa.train_ids, counts.astype(np.intp))
file_pids = fa.file[f'/INSTRUMENT/{source}/image/pulseId'][:]
if file_pids.ndim == 2 and file_pids.shape[1] == 1:
# Raw data has a spurious extra dimension
file_pids = file_pids[:, 0]
# Data can have trailing 0s, seemingly
file_pids = file_pids[:len(file_tids)]
file_tp_ids = zip_trains_pulses(file_tids, file_pids)
# indexes of selected frames in datasets under .../image in this file
ixs = np.isin(file_tp_ids, self.inc_tp_ids).nonzero()[0]
nframes = ixs.shape[0]
for key in keys:
path = f"INSTRUMENT/{source}/{key.replace('.', '/')}"
dst_ds = self.file[path]
dst_cursor = dst_ds.shape[0]
dst_ds.resize(dst_cursor + nframes, axis=0)
dst_ds[dst_cursor: dst_cursor+nframes] = fa.file[path][ixs]
frame_tids_piecewise.append(file_tids[ixs])
frame_tids = np.concatenate(frame_tids_piecewise)
self._make_index(source, 'image', frame_tids)
def copy_source(self, source):
"""Copy all the relevant data for one detector source"""
if source not in self.data.instrument_sources:
return super().copy_source(source)
all_keys = self.data.keys_for_source(source)
img_keys = {k for k in all_keys if k.startswith('image.')}
for key in sorted(all_keys - img_keys):
self.copy_dataset(source, key)
self.copy_image_data(source, sorted(img_keys))
class MPxDetectorTrainIterator:
"""Iterate over trains in detector data, assembling arrays.
Created by :meth:`DetectorData.trains`.
"""
def __init__(self, data, pulses=by_index[:], require_all=True):
self.data = data
self.pulses = _check_pulse_selection(pulses)
self.require_all = require_all
# {(source, key): (f, dataset)}
self._datasets_cache = {}
def _find_data(self, source, key, tid):
"""
Find FileAccess instance and dataset corresponding to source, key,
and train id tid.
Parameters
----------
source: string
Path to keys in HD5 file, e.g.: 'SPB_DET_AGIPD1M-1/DET/5CH0:xtdf'.
key: string
Key for data at source separated by dot, e.g.: 'image.data'.
tid: np.int
Train id.
Returns
-------
Tuple[FileAccess, int, h5py.Dataset]
FileAccess
Instance for the HD5 file with requested data.
int
Starting index for the requested data.
h5py.Dataset
h5py dataset with found data.
"""
file, ds = self._datasets_cache.get((source, key), (None, None))
if ds:
ixs = (file.train_ids == tid).nonzero()[0]
if ixs.size > 0:
return file, ixs[0], ds
data = self.data.data
path = '/INSTRUMENT/{}/{}'.format(source, key.replace('.', '/'))
f, pos = data._find_data(source, tid)
if f is not None:
ds = f.file[path]
self._datasets_cache[(source, key)] = (f, ds)
return f, pos, ds
return None, None, None
def _get_slow_data(self, source, key, tid):
"""
Get an array of slow (per train) data corresponding to source, key,
and train id tid. Also used for JUNGFRAU data with memory cell
dimension.
Parameters
----------
source: string
Path to keys in HD5 file, e.g.: 'SPB_DET_AGIPD1M-1/DET/5CH0:xtdf'.
key: string
Key for data at source separated by dot, e.g.: 'header.pulseCount'.
tid: np.int
Train id.
Returns
-------
xarray.DataArray
Array of selected slow data. In case there are more than one frame
for the train id tid - train id dimension is kept indexing frames
within tid.
"""
from xarray import DataArray
file, pos, ds = self._find_data(source, key, tid)
if file is None:
return None
group = key.partition('.')[0]
firsts, counts = file.get_index(source, group)
first, count = firsts[pos], counts[pos]
if count == 1:
return DataArray(ds[first])
else:
return DataArray(ds[first : first + count])
def _get_pulse_data(self, source, key, tid):
"""
Get an array of per pulse data corresponding to source, key,
and train id tid. Used only for AGIPD-like detectors, for
JUNGFRAU-like per-cell data '_get_slow_data' is used.
Parameters
----------
source: string
Path to keys in HD5 file, e.g.: 'SPB_DET_AGIPD1M-1/DET/5CH0:xtdf'.
key: string
Key for data at source separated by dot, e.g.: 'image.data'.
tid: np.int
Train id.
Returns
-------
xarray.DataArray
Array of selected per pulse data.
"""
from xarray import DataArray
file, pos, ds = self._find_data(source, key, tid)
if file is None:
return None
group = key.partition('.')[0]
firsts, counts = file.get_index(source, group)
first, count = firsts[pos], counts[pos]
pulse_ids = file.file['/INSTRUMENT/{}/{}/pulseId'.format(source, group)][
first : first + count
]
# Raw files have a spurious extra dimension
if pulse_ids.ndim >= 2 and pulse_ids.shape[1] == 1:
pulse_ids = pulse_ids[:, 0]
if isinstance(self.pulses, by_id):
positions = self._select_pulse_ids(pulse_ids)
elif isinstance(self.pulses, by_index):
positions = self._select_pulse_indices(count)
else:
raise TypeError(f"Pulse selection should not be {type(self.pulses)}")
pulse_ids = pulse_ids[positions]
train_ids = np.array([tid] * len(pulse_ids), dtype=np.uint64)
train_pulse_ids = self.data._make_image_index(train_ids, pulse_ids)
if isinstance(positions, slice):
data_positions = slice(
int(first + positions.start),
int(first + positions.stop),
positions.step
)
else: # ndarray
data_positions = first + positions
data = ds[data_positions]
# Raw files have a spurious extra dimension
if data.ndim >= 2 and data.shape[1] == 1:
data = data[:, 0]
dims = self.data[key].dimensions[1:] # excluding 'module' dim
coords = {'train_pulse': train_pulse_ids}
arr = DataArray(data, coords=coords, dims=dims)
# Separate train & pulse dimensions, and arrange dimensions
# so that the data is contiguous in memory.
dim_order = train_pulse_ids.names + dims[1:]
return arr.unstack('train_pulse').transpose(*dim_order)
def _select_pulse_ids(self, pulse_ids):
"""Select pulses by ID
Returns an array or slice of the indexes to include.
"""
val = self.pulses.value
N = len(pulse_ids)
if isinstance(val, slice):
if val.step == 1:
after_start = np.nonzero(pulse_ids >= val.start)[0]
after_stop = np.nonzero(pulse_ids >= val.stop)[0]
start_ix = after_start[0] if (after_start.size > 0) else N
stop_ix = after_stop[0] if (after_stop.size > 0) else N
return slice(start_ix, stop_ix)
# step != 1
desired = np.arange(val.start, val.stop, step=val.step, dtype=np.uint64)
else:
desired = val
return np.nonzero(np.isin(pulse_ids, desired))[0].astype(np.uint64)
def _select_pulse_indices(self, count):
"""Select pulses by index
Returns an array or slice of the indexes to include.
"""
val = self.pulses.value
if isinstance(val, slice):
return slice(val.start, min(val.stop, count), val.step)
# ndarray
return val[val < count]
def _assemble_data(self, tid):
"""
Assemble data for all keys into a dictionary for specified train id.
Parameters
----------
tid: int
Train id.
Returns
-------
Dict[str, xarray]:
str
Key name.
xarray
Assembled data array.
"""
import xarray
key_module_arrays = {}
for modno, source in sorted(self.data.modno_to_source.items()):
for key in self.data.data._keys_for_source(source):
# At present, all the per-pulse data is stored in the 'image' key.
# If that changes, this check will need to change as well.
if key.startswith('image.'):
mod_data = self._get_pulse_data(source, key, tid)
else:
mod_data = self._get_slow_data(source, key, tid)
if mod_data is None:
continue
if key not in key_module_arrays:
key_module_arrays[key] = [], []
modnos, data = key_module_arrays[key]
modnos.append(modno)
data.append(mod_data)
# Assemble the data for each key into one xarray
return {
k: xarray.concat(data, pd.Index(modnos, name='module'))
for (k, (modnos, data)) in key_module_arrays.items()
}
def __iter__(self):
"""
Iterate over train ids and yield assembled data dictionaries.
Yields
------
Tuple[int, Dict[str, xarray]]:
int
train id.
Dict[str, xarray]
assembled {key: data array} dictionary.
"""
for tid in self.data.train_ids:
tid = int(tid) # Convert numpy int to regular Python int
if self.require_all and self.data.data._check_data_missing(tid):
continue
yield tid, self._assemble_data(tid)
@multimod_detectors
class AGIPD1M(XtdfDetectorBase):
"""An interface to AGIPD-1M data.
Parameters
----------
data: DataCollection
A data collection, e.g. from :func:`.RunDirectory`.
modules: set of ints, optional
Detector module numbers to use. By default, all available modules
are used.
detector_name: str, optional
Name of a detector, e.g. 'SPB_DET_AGIPD1M-1'. This is only needed
if the dataset includes more than one AGIPD detector.
min_modules: int
Include trains where at least n modules have data. Default is 1.
raw: bool
True to access raw data, False for corrected. The default is to use
corrected if available & raw otherwise.
"""
_det_name_pat = r'[^/]+_AGIPD1M[^/]*'
_source_raw_pat = r'/DET/(?P<modno>\d+)CH'
_source_corr_pat = r'/CORR/(?P<modno>\d+)CH'
module_shape = (512, 128)
@classmethod
def _data_is_raw(cls, data, source: str):
# Raw AGIPD data has an extra dimension (data/gain) compared to raw
kd = data[source, cls._main_data_key]
return kd.ndim == 4
@multimod_detectors
class AGIPD500K(XtdfDetectorBase):
"""An interface to AGIPD-500K data
Detector names are like 'HED_DET_AGIPD500K2G', otherwise this is identical
to :class:`AGIPD1M`.
"""
_det_name_pat = r'[^/]+AGIPD500K[^/]*'
_source_raw_pat = r'/DET/(?P<modno>\d+)CH'
_source_corr_pat = r'/CORR/(?P<modno>\d+)CH'
module_shape = (512, 128)
n_modules = 8
@classmethod
def _data_is_raw(cls, data, source: str):
# Raw AGIPD data has an extra dimension (data/gain) compared to raw
kd = data[source, cls._main_data_key]
return kd.ndim == 4
@multimod_detectors
class DSSC1M(XtdfDetectorBase):
"""An interface to DSSC-1M data.
Parameters
----------
data: DataCollection
A data collection, e.g. from :func:`.RunDirectory`.
modules: set of ints, optional
Detector module numbers to use. By default, all available modules
are used.
detector_name: str, optional
Name of a detector, e.g. 'SCS_DET_DSSC1M-1'. This is only needed
if the dataset includes more than one DSSC detector.
min_modules: int
Include trains where at least n modules have data. Default is 1.
raw: bool
True to access raw data, False for corrected. The default is to use
corrected if available & raw otherwise.
"""
_det_name_pat = r'[^/]+_DSSC1M[^/]*'
_source_raw_pat = r'/DET/(?P<modno>\d+)CH'
_source_corr_pat = r'/CORR/(?P<modno>\d+)CH'
module_shape = (128, 512)
@multimod_detectors
class LPD1M(XtdfDetectorBase):
"""An interface to LPD-1M data.
Parameters
----------
data: DataCollection
A data collection, e.g. from :func:`.RunDirectory`.
modules: set of ints, optional
Detector module numbers to use. By default, all available modules
are used.
detector_name: str, optional
Name of a detector, e.g. 'FXE_DET_LPD1M-1'. This is only needed
if the dataset includes more than one LPD detector.
min_modules: int
Include trains where at least n modules have data. Default is 1.
raw: bool
True to access raw data, False for corrected. The default is to use
corrected if available & raw otherwise.
parallel_gain: bool
Set to True to read this data as parallel gain data, where high, medium
and low gain data are stored sequentially within each train. This will
repeat the pulse & cell IDs from the first 1/3 of each train, and add gain
stage labels from 0 (high-gain) to 2 (low-gain).
"""
_det_name_pat = r'[^/]+_LPD1M[^/]*'
_source_raw_pat = r'/DET/(?P<modno>\d+)CH'
_source_corr_pat = r'/CORR/(?P<modno>\d+)CH'
module_shape = (256, 256)
def __init__(self, data: DataCollection, detector_name=None, modules=None,
*, min_modules=1, parallel_gain=False, raw=None):
super().__init__(
data, detector_name, modules, min_modules=min_modules, raw=raw
)
self.parallel_gain = parallel_gain
if parallel_gain:
if ((self.frame_counts % 3) != 0).any():
raise ValueError(
"parallel_gain=True needs the frames in each train to be divisible by 3"
)
def _read_inner_ids(self, field='pulseId'):
inner_ids = super()._read_inner_ids(field)
if not self.parallel_gain:
return inner_ids
# In 'parallel gain' mode, the first 1/3 of pulse/cell IDs in each train
# are valid, but the remaining 2/3 are junk. So we'll repeat the valid
# ones 3 times (in inner_ids_fixed).
inner_ids_fixed = np.zeros_like(inner_ids)
cursor = 0
for count in self.frame_counts: # Iterate through trains
n_per_gain_stage = int(count // 3)
train_inner_ids = inner_ids[cursor: cursor + n_per_gain_stage]
for stage in range(3):
end = cursor + n_per_gain_stage
inner_ids_fixed[cursor:end] = train_inner_ids
cursor = end
return inner_ids_fixed
def _select_pulse_indices(self, pulses, counts):
"""Select pulses by index across a chunk of trains
Returns a boolean array of frames to include.
"""
if not self.parallel_gain:
return super()._select_pulse_indices(pulses, counts)
sel_frames = np.zeros(counts.sum(), dtype=np.bool_)
cursor = 0
for count in counts:
n_per_gain_stage = int(count // 3)
sel_in_train = pulses.value
if isinstance(sel_in_train, np.ndarray):
# Ignore any indices after the end of the gain stage
sel_in_train = sel_in_train[sel_in_train < n_per_gain_stage]
for stage in range(3):
sel_frames[cursor:cursor + n_per_gain_stage][sel_in_train] = 1
cursor += n_per_gain_stage
return sel_frames
def _make_image_index(self, tids, inner_ids, inner_name='pulse'):
if not self.parallel_gain:
return super()._make_image_index(tids, inner_ids, inner_name)
# In 'parallel gain' mode, the first 1/3 of pulse/cell IDs in each train
# are valid, but the remaining 2/3 are junk. So we'll repeat the valid
# ones 3 times (in inner_ids_fixed). At the same time, we make a gain
# stage index (0-2), so each frame has a unique entry in the MultiIndex
# (train ID, gain, pulse/cell ID)
gain = np.zeros_like(inner_ids, dtype=np.uint8)
inner_ids_fixed = np.zeros_like(inner_ids)
_, firsts, counts = np.unique(tids, return_index=True, return_counts=True)
for ix, frames in zip(firsts, counts): # Iterate through trains
n_per_gain_stage = int(frames // 3)
train_inner_ids = inner_ids[ix: ix + n_per_gain_stage]
for stage in range(3):
start = ix + (stage * n_per_gain_stage)
end = start + n_per_gain_stage
gain[start:end] = stage
inner_ids_fixed[start:end] = train_inner_ids
return pd.MultiIndex.from_arrays(
[tids, gain, inner_ids_fixed], names=['train', 'gain', inner_name]
)
@multimod_detectors
class JUNGFRAU(MultimodDetectorBase):
"""An interface to JUNGFRAU data.
JNGFR, JF1M, JF4M all store data in a "data" group, with trains along
the first and memory cells along the second dimension.
This allows only a set number of frames to be stored for each train.
Parameters
----------
data: DataCollection
A data collection, e.g. from :func:`.RunDirectory`.
detector_name: str, optional
Name of a detector, e.g. 'SPB_IRDA_JNGFR'. This is only needed
if the dataset includes more than one JUNGFRAU detector.
modules: set of ints, optional
Detector module numbers to use. By default, all available modules
are used.
min_modules: int
Include trains where at least n modules have data. Default is 1.
n_modules: int
Number of detector modules in the experiment setup. Default is
None, in which case it will be estimated from the available data.
first_modno: int
The module number in the source name for the first detector module.
e.g. FXE_XAD_JF500K/DET/JNGFR03:daqOutput should have first_modno = 3
raw: bool
True to access raw data, False for corrected. The default is to use
corrected if available & raw otherwise.
"""
# We appear to have a few different formats for source names:
# SPB_IRDA_JNGFR/DET/MODULE_1:daqOutput (e.g. in p 2566, r 61)
# SPB_IRDA_JF4M/DET/JNGFR03:daqOutput (e.g. in p 2732, r 12)
# FXE_XAD_JF500K/DET/JNGFR03:daqOutput (e.g. in p 2478, r 52)
# HED_IA1_JF500K1/DET/JNGFR01:daqOutput (e.g. in p 2656, r 230)
# FXE_XAD_JF1M/DET/RECEIVER-1
_det_name_pat = r'[^/]+_(JNGFR|JF[14]M|JUNGF|JF|JF500K\d?)'
_source_raw_pat = r'/DET/(MODULE_|RECEIVER-|JNGFR)(?P<modno>\d+)'
_source_corr_pat = r'/CORR/(MODULE_|RECEIVER-|JNGFR)(?P<modno>\d+)'
_main_data_key = 'data.adc'
_mask_data_key = 'data.mask'
_modnos_start_at = 1
module_shape = (512, 1024)
def __init__(self, data: DataCollection, detector_name=None, modules=None,
*, min_modules=1, n_modules=None, first_modno=1, raw=None):
super().__init__(data, detector_name, modules, min_modules=min_modules, raw=raw)
# Overwrite modno based on given starting module number and update
# source_to_modno and modno_to_source.
# JUNGFRAU modno is expected (e.g. extra_geom) to start with 1.
self.source_to_modno = {s: (m - first_modno + 1)
for (s, m) in self.source_to_modno.items()}
self.modno_to_source = {m: s for (s, m) in self.source_to_modno.items()}
if n_modules is not None:
self.n_modules = int(n_modules)
else:
# Re-scan sources without modules= selection to find largest number
self.n_modules = max(
self._identify_sources(data, self.detector_name, raw=raw).values()
) - first_modno + 1
# In burst mode, JUNGFRAU can have 16 frames per train
src = next(iter(self.source_to_modno))
self._frames_per_entry = self.data[src, self._main_data_key].entry_shape[0]
@staticmethod
def _label_dims(arr):
# Label dimensions to match the AGIPD/DSSC/LPD data access
ndim_pertrain = arr.ndim
if 'trainId' in arr.dims:
arr = arr.rename({'trainId': 'train'})
ndim_pertrain = arr.ndim - 1
if ndim_pertrain == 4:
arr = arr.rename({
'dim_0': 'cell', 'dim_1': 'slow_scan', 'dim_2': 'fast_scan'
})
elif ndim_pertrain == 2:
arr = arr.rename({'dim_0': 'cell'})
return arr
def get_array(self, key, *, fill_value=None, roi=(), astype=None):
"""Get a labelled array of detector data
Parameters
----------
key: str
The data to get, e.g. 'data.adc' for pixel values.
fill_value: int or float, optional
Value to use for missing values. If None (default) the fill value
is 0 for integers and np.nan for floats.
roi: tuple
Specify e.g. ``np.s_[:, 10:60, 100:200]`` to select data within each
module & each train when reading data. The first dimension is pulses,
then there are two pixel dimensions. The same selection is applied
to data from each module, so selecting pixels may only make sense if
you're using a single module.
astype: Type
data type of the output array. If None (default) the dtype matches the
input array dtype
"""
arr = super().get_array(key, fill_value=fill_value, roi=roi, astype=astype)
return self._label_dims(arr)
def get_dask_array(self, key, fill_value=None, astype=None):
"""Get a labelled Dask array of detector data
Dask does lazy, parallelised computing, and can work with large data
volumes. This method doesn't immediately load the data: that only
happens once you trigger a computation.
Parameters
----------
key: str
The data to get, e.g. 'data.adc' for pixel values.
fill_value: int or float, optional
Value to use for missing values. If None (default) the fill value
is 0 for integers and np.nan for floats.
astype: Type
data type of the output array. If None (default) the dtype matches the
input array dtype
"""
arr = super().get_dask_array(key, fill_value=fill_value, astype=astype)
return self._label_dims(arr)
def trains(self, require_all=True):
"""Iterate over trains for detector data.
Parameters
----------
require_all: bool
If True (default), skip trains where any of the selected detector
modules are missing data.
Yields
------
train_data: dict
A dictionary mapping key names (e.g. 'data.adc') to labelled
arrays.
"""
for tid, d in super().trains(require_all=require_all):
yield tid, {k: self._label_dims(a) for (k, a) in d.items()}
def write_virtual_cxi(self, filename, fillvalues=None):
"""Write a virtual CXI file to access the detector data.
The virtual datasets in the file provide a view of the detector
data as if it was a single huge array, but without copying the data.
Creating and using virtual datasets requires HDF5 1.10.
Parameters
----------
filename: str
The file to be written. Will be overwritten if it already exists.
fillvalues: dict, optional
keys are datasets names (one of: data, gain, mask) and associated
fill value for missing data (default is np.nan for float arrays and
zero for integer arrays)
"""
JUNGFRAUCXIWriter(self).write(filename, fillvalues=fillvalues)
def cell_ids(self):
MISSING = 255 # To fit in uint8
cids = self.select_trains(np.s_[:1])['data.memoryCell'].ndarray(
fill_value=MISSING
)[:, 0] # -> (modules, cells)
cells_min = cids.min(axis=0)
if (cells_min == MISSING).any():
raise Exception(f"Failed to find memoryCell")
cids[cids == MISSING] = 0
if (cells_min != cids.max(axis=0)).any():
raise Exception(f"Inconsistent memoryCell for different modules")
# Pulse IDs make sense. Drop the modules dimension, giving one
# pulse ID for each frame.
return cells_min
def identify_multimod_detectors(
data, detector_name=None, *, single=False, clses=None
):
"""Identify multi-module detectors in the data
Various detectors record data for individual X-ray pulses within
trains, and we often want to process whichever detector was used
in a run. This tries to identify the detector, so a user doesn't
have to specify it manually.
If ``single=True``, this returns a tuple of (detector_name, access_class),
throwing ``ValueError`` if there isn't exactly 1 detector found.
If ``single=False``, it returns a set of these tuples.
*clses* may be a list of acceptable detector classes to check.
"""
if clses is None:
clses = multimod_detectors.list
res = set()
for cls in clses:
for name in cls._find_detector_names(data):
res.add((name, cls))
if single:
if len(res) < 1:
raise ValueError("No detector sources identified in the data")
elif len(res) > 1:
raise ValueError("Multiple detectors identified: {}".format(
", ".join(name for (name, _) in res)
))
return res.pop()
return res
|