1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
|
# coding: utf-8
"""
Collection of classes and functions to help reading HDF5 file generated at
The European XFEL.
Copyright (c) 2017, European X-Ray Free-Electron Laser Facility GmbH
All rights reserved.
You should have received a copy of the 3-Clause BSD License along with this
program. If not, see <https://opensource.org/licenses/BSD-3-Clause>
"""
import datetime
import fnmatch
import logging
import os
import os.path as osp
import re
import signal
import sys
import tempfile
import time
from collections import defaultdict
from collections.abc import Iterable, Mapping, Sequence
from itertools import groupby
from multiprocessing import Pool
from operator import index
from pathlib import Path
from typing import Tuple
from warnings import warn
import h5py
import numpy as np
from . import locality, voview
from .aliases import AliasIndexer
from .exceptions import (MultiRunError, PropertyNameError, SourceNameError,
TrainIDError)
from .file_access import FileAccess
from .keydata import KeyData
from .read_machinery import (DETECTOR_SOURCE_RE, by_id, by_index,
find_proposal, glob_wildcards_re, is_int_like,
same_run, select_train_ids)
from .run_files_map import RunFilesMap
from .sourcedata import SourceData
from .utils import available_cpu_cores
__all__ = [
'H5File',
'RunDirectory',
'open_run',
'FileAccess',
'DataCollection',
'by_id',
'by_index',
'SourceNameError',
'PropertyNameError',
]
log = logging.getLogger(__name__)
RUN_DATA = 'RUN'
INDEX_DATA = 'INDEX'
METADATA = 'METADATA'
def ignore_sigint():
# Used in child processes to prevent them from receiving KeyboardInterrupt
signal.signal(signal.SIGINT, signal.SIG_IGN)
class DataCollection:
"""An assemblage of data generated at European XFEL
Data consists of *sources* which each have *keys*. It is further
organised by *trains*, which are identified by train IDs.
You normally get an instance of this class by calling :func:`H5File`
for a single file or :func:`RunDirectory` for a directory.
"""
def __init__(
self, files, sources_data=None, train_ids=None, aliases=None,
ctx_closes=False, *, inc_suspect_trains=True, is_single_run=False,
):
self.files = list(files)
self.ctx_closes = ctx_closes
self.inc_suspect_trains = inc_suspect_trains
self.is_single_run = is_single_run
if train_ids is None:
if inc_suspect_trains:
tid_sets = [f.train_ids for f in files]
else:
tid_sets = [f.valid_train_ids for f in files]
train_ids = sorted(set().union(*tid_sets))
self.train_ids = train_ids
if sources_data is None:
files_by_sources = defaultdict(list)
legacy_sources = dict()
for f in self.files:
for source in f.control_sources:
files_by_sources[source, 'CONTROL'].append(f)
for source in f.instrument_sources:
files_by_sources[source, 'INSTRUMENT'].append(f)
legacy_sources.update(f.legacy_sources)
sources_data = {
src: SourceData(src,
sel_keys=None,
train_ids=train_ids,
files=files,
section=section,
canonical_name=legacy_sources.get(src, src),
is_single_run=self.is_single_run,
inc_suspect_trains=self.inc_suspect_trains
)
for ((src, section), files) in files_by_sources.items()
}
self._sources_data = sources_data
self._aliases = aliases or {}
# Throw an error if we have conflicting data for the same source
self._check_source_conflicts()
self.control_sources = frozenset({
name for (name, sd) in self._sources_data.items()
if sd.section == 'CONTROL'
})
self.instrument_sources = frozenset({
name for (name, sd) in self._sources_data.items()
if sd.section == 'INSTRUMENT'
})
self.legacy_sources = {
name: sd.canonical_name for (name, sd)
in self._sources_data.items() if sd.is_legacy
}
@staticmethod
def _open_file(path, cache_info=None):
try:
fa = FileAccess(path, _cache_info=cache_info)
except Exception as e:
return osp.basename(path), str(e)
else:
return osp.basename(path), fa
@classmethod
def from_paths(
cls, paths, _files_map=None, *, inc_suspect_trains=True,
is_single_run=False, parallelize=True
):
files = []
uncached = []
def handle_open_file_attempt(fname, fa):
if isinstance(fa, FileAccess):
files.append(fa)
else:
print(f"Skipping file {fname}", file=sys.stderr)
print(f" (error was: {fa})", file=sys.stderr)
for path in paths:
cache_info = _files_map and _files_map.get(path)
if cache_info and ('flag' in cache_info):
filename, fa = cls._open_file(path, cache_info=cache_info)
handle_open_file_attempt(filename, fa)
else:
uncached.append(path)
if uncached:
# Open the files either in parallel or serially
if parallelize:
nproc = min(available_cpu_cores(), len(uncached))
with Pool(processes=nproc, initializer=ignore_sigint) as pool:
for fname, fa in pool.imap_unordered(cls._open_file, uncached):
handle_open_file_attempt(fname, fa)
else:
for path in uncached:
handle_open_file_attempt(*cls._open_file(path))
if not files:
raise Exception("All HDF5 files specified are unusable")
return cls(
files, ctx_closes=True, inc_suspect_trains=inc_suspect_trains,
is_single_run=is_single_run,
)
@classmethod
def from_path(cls, path, *, inc_suspect_trains=True):
files = [FileAccess(path)]
return cls(
files, ctx_closes=True, inc_suspect_trains=inc_suspect_trains,
is_single_run=True
)
def __enter__(self):
if not self.ctx_closes:
raise Exception(
"Only DataCollection objects created by opening "
"files directly can be used in a 'with' statement, "
"not those created by selecting from or merging "
"others."
)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
# Close the files if this collection was created by opening them.
if self.ctx_closes:
for file in self.files:
file.close()
@property
def selection(self):
# This was previously a regular attribute, which code may have relied on.
return {src: srcdata.sel_keys for src, srcdata in self._sources_data.items()}
@property
def _source_index(self):
warn(
"DataCollection._source_index will be removed. "
"Contact da-support@xfel.eu if you need to discuss alternatives.",
stacklevel=2
)
return {src: srcdata.files for src, srcdata in self._sources_data.items()}
@property
def all_sources(self):
return self.control_sources | self.instrument_sources
@property
def detector_sources(self):
return set(filter(DETECTOR_SOURCE_RE.match, self.instrument_sources)) \
- self.legacy_sources.keys()
def _check_field(self, source, key):
if source not in self.all_sources:
raise SourceNameError(source)
if key not in self[source]:
raise PropertyNameError(key, source)
def keys_for_source(self, source):
"""Get a set of key names for the given source
If you have used :meth:`select` to filter keys, only selected keys
are returned.
Only one file is used to find the keys. Within a run, all files should
have the same keys for a given source, but if you use :meth:`union` to
combine two runs where the source was configured differently, the
result can be unpredictable.
"""
return self._get_source_data(source).keys()
# Leave old name in case anything external was using it:
_keys_for_source = keys_for_source
def _get_key_data(self, source, key):
return self._get_source_data(source)[key]
def _get_source_data(self, source):
if source not in self._sources_data:
raise SourceNameError(source)
sd = self._sources_data[source]
if sd.is_legacy:
warn(f"{source} is a legacy name for {self.legacy_sources[source]}. "
f"Access via this name will be removed for future data.",
DeprecationWarning,
stacklevel=3)
return self._sources_data[source]
def __getitem__(self, item):
if (
isinstance(item, tuple) and
len(item) == 2 and
all(isinstance(e, str) for e in item)
):
return self._get_key_data(*item)
elif isinstance(item, str):
return self._get_source_data(item)
elif (
isinstance(item, (by_id, by_index, list, np.ndarray, slice)) or
is_int_like(item)
):
return self.select_trains(item)
raise TypeError("Expected data[source], data[source, key] or data[train_selection]")
def __contains__(self, item):
if (
isinstance(item, tuple) and
len(item) == 2 and
all(isinstance(e, str) for e in item)
):
return item[0] in self.all_sources and \
item[1] in self._get_source_data(item[0])
elif isinstance(item, str):
return item in self.all_sources
return False
__iter__ = None # Disable iteration
def _ipython_key_completions_(self):
return list(self.all_sources)
def get_entry_shape(self, source, key):
"""Get the shape of a single data entry for the given source & key"""
return self._get_key_data(source, key).entry_shape
def get_dtype(self, source, key):
"""Get the numpy data type for the given source & key"""
return self._get_key_data(source, key).dtype
def _check_data_missing(self, tid) -> bool:
"""Return True if a train does not have data for all sources"""
for source in self.control_sources:
file, _ = self._find_data(source, tid)
if file is None:
return True
# No need to evaluate this for legacy sources as well.
for source in self.instrument_sources - self.legacy_sources.keys():
file, pos = self._find_data(source, tid)
if file is None:
return True
groups = {k.partition('.')[0] for k in self.keys_for_source(source)}
for group in groups:
_, counts = file.get_index(source, group)
if counts[pos] == 0:
return True
return False
def trains(self, devices=None, train_range=None, *, require_all=False,
flat_keys=False, keep_dims=False):
"""Iterate over all trains in the data and gather all sources.
::
run = Run('/path/to/my/run/r0123')
for train_id, data in run.select("*/DET/*", "image.data").trains():
mod0 = data["FXE_DET_LPD1M-1/DET/0CH0:xtdf"]["image.data"]
Parameters
----------
devices: dict or list, optional
Filter data by sources and keys.
Refer to :meth:`select` for how to use this.
train_range: by_id or by_index object, optional
Iterate over only selected trains, by train ID or by index.
Refer to :meth:`select_trains` for how to use this.
require_all: bool
False (default) returns any data available for the requested trains.
True skips trains which don't have all the selected data;
this only makes sense if you make a selection with *devices*
or :meth:`select`.
flat_keys: bool
False (default) returns nested dictionaries in each
iteration indexed by source and then key. True returns a
flat dictionary indexed by (source, key) tuples.
keep_dims: bool
False (default) drops the first dimension when there is
a single entry. True preserves this dimension.
Yields
------
tid : int
The train ID of the returned train
data : dict
The data for this train, keyed by device name
"""
dc = self
if devices is not None:
dc = dc.select(devices)
if train_range is not None:
dc = dc.select_trains(train_range)
return iter(TrainIterator(dc, require_all=require_all,
flat_keys=flat_keys, keep_dims=keep_dims))
def train_from_id(
self, train_id, devices=None, *, flat_keys=False, keep_dims=False):
"""Get train data for specified train ID.
Parameters
----------
train_id: int
The train ID
devices: dict or list, optional
Filter data by sources and keys.
Refer to :meth:`select` for how to use this.
flat_keys: bool
False (default) returns a nested dict indexed by source and then key.
True returns a flat dictionary indexed by (source, key) tuples.
keep_dims: bool
False (default) drops the first dimension when there is
a single entry. True preserves this dimension.
Returns
-------
tid : int
The train ID of the returned train
data : dict
The data for this train, keyed by device name
Raises
------
KeyError
if `train_id` is not found in the run.
"""
if train_id not in self.train_ids:
raise TrainIDError(train_id)
if devices is not None:
return self.select(devices).train_from_id(train_id)
res = {}
for source in self.control_sources:
source_data = res[source] = {
'metadata': {'source': source, 'timestamp.tid': train_id}
}
file, pos = self._find_data(source, train_id)
if file is None:
continue
firsts, counts = file.get_index(source, '')
first, count = firsts[pos], counts[pos]
if not count:
continue
for key in self.keys_for_source(source):
path = '/CONTROL/{}/{}'.format(source, key.replace('.', '/'))
source_data[key] = file.file[path][first]
for source in self.instrument_sources:
source_data = res[source] = {
'metadata': {'source': source, 'timestamp.tid': train_id}
}
file, pos = self._find_data(source, train_id)
if file is None:
continue
for key in self.keys_for_source(source):
group = key.partition('.')[0]
firsts, counts = file.get_index(source, group)
first, count = firsts[pos], counts[pos]
if not count:
continue
path = '/INSTRUMENT/{}/{}'.format(source, key.replace('.', '/'))
if count == 1 and not keep_dims:
source_data[key] = file.file[path][first]
else:
source_data[key] = file.file[path][first : first + count]
if flat_keys:
# {src: {key: data}} -> {(src, key): data}
res = {(src, key): v for src, source_data in res.items()
for (key, v) in source_data.items()}
return train_id, res
def train_from_index(
self, train_index, devices=None, *, flat_keys=False, keep_dims=False):
"""Get train data of the nth train in this data.
Parameters
----------
train_index: int
Index of the train in the file.
devices: dict or list, optional
Filter data by sources and keys.
Refer to :meth:`select` for how to use this.
flat_keys: bool
False (default) returns a nested dict indexed by source and then key.
True returns a flat dictionary indexed by (source, key) tuples.
keep_dims: bool
False (default) drops the first dimension when there is
a single entry. True preserves this dimension.
Returns
-------
tid : int
The train ID of the returned train
data : dict
The data for this train, keyed by device name
"""
train_id = self.train_ids[train_index]
return self.train_from_id(
int(train_id), devices=devices,
flat_keys=flat_keys, keep_dims=keep_dims)
def get_data_counts(self, source, key):
"""Get a count of data points in each train for the given data field.
Returns a pandas series with an index of train IDs.
Parameters
----------
source: str
Source name, e.g. "SPB_DET_AGIPD1M-1/DET/7CH0:xtdf"
key: str
Key of parameter within that device, e.g. "image.data".
"""
return self._get_key_data(source, key).data_counts()
def get_series(self, source, key):
"""Return a pandas Series for a 1D data field defined by source & key.
See :meth:`.KeyData.series` for details.
"""
return self._get_key_data(source, key).series()
def get_dataframe(self, fields=None, *, timestamps=False):
"""Return a pandas dataframe for given data fields.
::
df = run.get_dataframe(fields=[
("*_XGM/*", "*.i[xy]Pos"),
("*_XGM/*", "*.photonFlux")
])
This links together multiple 1-dimensional datasets as columns in a
table.
Parameters
----------
fields : dict or list, optional
Select data sources and keys to include in the dataframe.
Selections are defined by lists or dicts as in :meth:`select`.
timestamps : bool
If false (the default), exclude the timestamps associated with each
control data field.
"""
import pandas as pd
if fields is not None:
return self.select(fields).get_dataframe(timestamps=timestamps)
series = []
for source in self.all_sources:
for key in self.keys_for_source(source):
if (not timestamps) and key.endswith('.timestamp'):
continue
series.append(self.get_series(source, key))
return pd.concat(series, axis=1)
def get_array(self, source, key, extra_dims=None, roi=(), name=None):
"""Return a labelled array for a data field defined by source and key.
see :meth:`.KeyData.xarray` for details.
"""
if isinstance(roi, by_index):
roi = roi.value
return self._get_key_data(source, key).xarray(
extra_dims=extra_dims, roi=roi, name=name)
def get_dask_array(self, source, key, labelled=False):
"""Get a Dask array for a data field defined by source and key.
see :meth:`.KeyData.dask_array` for details.
"""
return self._get_key_data(source, key).dask_array(labelled=labelled)
def get_run_value(self, source, key):
"""Get a single value from the RUN section of data files.
RUN records each property of control devices as a snapshot at the
beginning of the run. This includes properties which are not saved
continuously in CONTROL data.
This method is intended for use with data from a single run. If you
combine data from multiple runs, it will raise MultiRunError.
Parameters
----------
source: str
Control device name, e.g. "HED_OPT_PAM/CAM/SAMPLE_CAM_4".
key: str
Key of parameter within that device, e.g. "triggerMode".
"""
return self._get_source_data(source).run_value(key)
def get_run_values(self, source) -> dict:
"""Get a dict of all RUN values for the given source
This includes keys which are also in CONTROL.
Parameters
----------
source: str
Control device name, e.g. "HED_OPT_PAM/CAM/SAMPLE_CAM_4".
"""
return self._get_source_data(source).run_values()
def _merge_aliases(self, alias_dicts):
"""Merge multiple alias dictionaries and check for conflicts."""
new_aliases = {}
for aliases in alias_dicts:
for alias, literal in aliases.items():
alias = alias.lower().replace('_', '-')
if new_aliases.setdefault(alias, literal) != literal:
raise ValueError(f'conflicting alias definition '
f'for {alias} (or {alias.upper()}, '
f'{alias.replace("-", "_")}, etc.)')
return new_aliases
def union(self, *others):
"""Join the data in this collection with one or more others.
This can be used to join multiple sources for the same trains,
or to extend the same sources with data for further trains.
The order of the datasets doesn't matter. Any aliases defined on
the collections are combined as well unless their values conflict.
Note that the trains for each source are unioned as well, such that
``run.train_ids == run[src].train_ids``.
Returns a new :class:`DataCollection` object.
"""
sources_data_multi = defaultdict(list)
for dc in (self,) + others:
for source, srcdata in dc._sources_data.items():
sources_data_multi[source].append(srcdata)
sources_data = {src: src_datas[0].union(*src_datas[1:])
for src, src_datas in sources_data_multi.items()}
aliases = self._merge_aliases(
[self._aliases] + [dc._aliases for dc in others])
train_ids = sorted(set().union(*[sd.train_ids for sd in sources_data.values()]))
# Update the internal list of train IDs for the sources
for sd in sources_data.values():
sd.train_ids = train_ids
files = set().union(*[sd.files for sd in sources_data.values()])
return DataCollection(
files, sources_data=sources_data, train_ids=train_ids,
aliases=aliases, inc_suspect_trains=self.inc_suspect_trains,
is_single_run=same_run(self, *others),
)
def __or__(self, other):
return self.union(other)
def __ior__(self, other):
return self.union(other)
def _parse_aliases(self, alias_defs):
"""Parse alias definitions into alias dictionaries."""
alias_dicts = []
def is_valid_alias(k, v):
return (isinstance(k, str) and (
isinstance(v, str) or (isinstance(v, tuple) and len(v) == 2)
))
for alias_def in alias_defs:
if isinstance(alias_def, Mapping):
if any([not is_valid_alias(k, v) for k, v in alias_def.items()]):
raise ValueError('alias definition by dict must be all '
'str keys to str values for sources or '
'2-len tuples for sourcekeys')
alias_dicts.append(alias_def)
elif isinstance(alias_def, (str, os.PathLike)):
# From a file.
alias_dicts.append(
self._load_aliases_from_file(Path(alias_def)))
return alias_dicts
def _load_aliases_from_file(self, aliases_path):
"""Load alias definitions from file."""
if aliases_path.suffix == '.json':
import json
with open(aliases_path, 'r') as f:
data = json.load(f)
elif aliases_path.suffix in ['.yaml', '.yml']:
import yaml
with open(aliases_path, 'r') as f:
data = yaml.safe_load(f)
elif aliases_path.suffix == '.toml':
try:
from tomli import load as load_toml
except ImportError:
# Try the built-in tomllib for 3.11+.
from tomllib import load as load_toml
with open(aliases_path, 'rb') as f:
data = load_toml(f)
aliases = {}
def walk_dict_value(source, key_aliases):
for alias, key in key_aliases.items():
aliases[alias] = (source, key)
for key, value in data.items():
if isinstance(value, str):
# Source alias.
aliases[key] = value
elif isinstance(value, list) and len(value) == 2:
# Sourcekey alias by explicit list.
aliases[key] = tuple((str(x) for x in value))
elif isinstance(value, dict):
# Sourcekey alias by nested mapping.
walk_dict_value(key, value)
else:
raise ValueError(f"unsupported literal type for alias '{key}'")
return aliases
def with_aliases(self, *alias_defs):
"""Apply aliases for convenient source and key access.
Allows to define aliases for sources or source-key combinations
that may be used instead of their literal names to retrieve
:class:`SourceData` and :class:`KeyData` objects via
:attr:`.DataCollection.alias`.
Multiple alias definitions may be passed as positional arguments
in different formats:
1. Passing a dictionary mapping aliases to sources (passed as strings)
or source-key pairs (passed as a 2-len tuple of strings).
2. Passing a string or PathLike pointing to a JSON, YAML (requires
pyYAML installed) or TOML (requires Python 3.11 or with tomli
installed) file containing the aliases. For unsupported formats,
an :class:`ImportError` is raised.
The file should contain mappings from alias to sources as strings
or source-key pairs as lists. In addition, source-key aliases may
be defined by nested key-value pairs according to the respective
format, shown here in YAML:
.. code-block:: yaml
# Source alias.
sa1-xgm: SA1_XTD2_XGM/XGM/DOOCS
# Direct source key alias.
sa1-intensity: [SA1_XTD2_XGM/XGM/DOOCS:output, data.intensityTD]
# Nested source key alias, useful if you want aliases for multiple
# keys of the same source.
SA3_XTD10_MONO/MDL/PHOTON_ENERGY:
mono-central-energy: actualEnergy
Returns a new :class:`DataCollection` object with the aliases
for sources and keys.
"""
# Check for conflicts within these definitions
new_aliases = self._merge_aliases(
[self._aliases] + self._parse_aliases(alias_defs))
return DataCollection(
self.files, sources_data=self._sources_data,
train_ids=self.train_ids, aliases=new_aliases,
inc_suspect_trains=self.inc_suspect_trains,
is_single_run=self.is_single_run
)
def only_aliases(self, *alias_defs, strict=False, require_all=False):
"""Apply aliases and select only the aliased sources and keys.
A convenient function around :meth:`DataCollection.with_aliases`
and :meth:`DataCollection.select` applying both the aliases passed
as ``alias_defs`` to the former and then selecting down the
:class:`DataCollection` to any sources and/or their keys for which
aliases exist.
By default and unlike :meth:`DataCollection.select`, any sources
or keys present in the alias definitions but not the data itself are
ignored. This can be changed via the optional argument ``strict``.
The optional ``require_all`` argument restricts the trains to those for
which all selected sources and keys have at least one data entry. By
default, all trains remain selected.
Returns a new :class:`DataCollection` object with only the aliased
sources and keys.
"""
# Create new aliases.
aliases = self._merge_aliases(
[self._aliases] + self._parse_aliases(alias_defs))
# Set of sources aliased.
aliased_sources = {literal for literal in aliases.values()
if isinstance(literal, str)}
# In the current implementation of DataCollection.select(), any
# occurence of a wildcard glob will include all keys for a given
# source, even if specific keys are listed as well. To be safe,
# the source aliases are picked first and no specific sourcekey
# aliases for the same source are included in the selection.
# Entire source selections.
selection = [(source, '*') for source in aliased_sources]
# Specific key selections.
selection += [
literal for literal in aliases.values()
if isinstance(literal, tuple) \
and literal[0] not in aliased_sources
]
if not strict:
# If strict mode is disabled, any non-existing sources or
# keys are stripped out.
existing_sel_idx = []
for sel_idx, (source, key) in enumerate(selection):
try:
sd = self[source]
except SourceNameError:
# Source not present.
continue
else:
if key != '*' and key not in sd:
# Source present, but not key.
continue
existing_sel_idx.append(sel_idx)
selection = [selection[sel_idx] for sel_idx in existing_sel_idx]
# Create a new DataCollection from selecting and add the aliases.
new_data = self.select(selection, require_all=require_all)
new_data._aliases = aliases
return new_data
def drop_aliases(self):
"""Return a new DataCollection without any aliases."""
return DataCollection(
self.files, sources_data=self._sources_data,
train_ids=self.train_ids, aliases={},
inc_suspect_trains=self.inc_suspect_trains,
is_single_run=self.is_single_run
)
@property
def alias(self):
"""Enables item access via source and key aliases."""
return AliasIndexer(self)
def _expand_selection(self, selection):
if isinstance(selection, dict):
# {source: {key1, key2}}
# {source: set()} or {source: None} -> all keys for this source
res = {}
for source, in_keys in selection.items():
if source not in self.all_sources:
raise SourceNameError(source)
# Empty dict was accidentally allowed and tested; keep it
# working just in case.
if in_keys == {}:
in_keys = set()
if in_keys is not None and not isinstance(in_keys, set):
raise TypeError(
f"keys in selection dict should be a set or None (got "
f"{in_keys!r})"
)
res[source] = self._sources_data[source].select_keys(in_keys)
return res
elif isinstance(selection, Iterable):
# selection = [('src_glob', 'key_glob'), ...]
# OR ['src_glob', 'src_glob', ...]
sources_data_multi = defaultdict(list)
for globs in selection:
if isinstance(globs, str):
src_glob = globs
key_glob = '*'
else:
src_glob, key_glob = globs
for source, keys in self._select_glob(src_glob, key_glob).items():
sources_data_multi[source].append(
self._sources_data[source].select_keys(keys)
)
return {src: src_datas[0].union(*src_datas[1:])
for src, src_datas in sources_data_multi.items()}
elif isinstance(selection, DataCollection):
return self._expand_selection(selection.selection)
elif isinstance(selection, SourceData):
return {selection.source: selection}
elif isinstance(selection, KeyData):
src = selection.source
return {src: self._sources_data[src].select_keys({selection.key})}
else:
raise TypeError("Unknown selection type: {}".format(type(selection)))
def _select_glob(self, source_glob, key_glob):
source_re = re.compile(fnmatch.translate(source_glob))
key_re = re.compile(fnmatch.translate(key_glob))
if key_glob.endswith(('.value', '*')):
ctrl_key_glob = key_glob
ctrl_key_re = key_re
else:
# Add .value suffix for keys of CONTROL sources
ctrl_key_glob = key_glob + '.value'
ctrl_key_re = re.compile(fnmatch.translate(ctrl_key_glob))
matched = {}
for source in self.all_sources:
if not source_re.match(source):
continue
if key_glob == '*':
# When the selection refers to all keys, make sure this
# is restricted to the current selection of keys for
# this source.
if self.selection[source] is None:
matched[source] = None
else:
matched[source] = self.selection[source]
elif glob_wildcards_re.search(key_glob) is None:
# Selecting a single key (no wildcards in pattern)
# This check should be faster than scanning all keys:
k = ctrl_key_glob if source in self.control_sources else key_glob
if k in self._sources_data[source]:
matched[source] = {k}
else:
r = ctrl_key_re if source in self.control_sources else key_re
keys = set(filter(r.match, self.keys_for_source(source)))
if keys:
matched[source] = keys
if not matched:
raise ValueError("No matches for pattern {}"
.format((source_glob, key_glob)))
return matched
def select(self, seln_or_source_glob, key_glob='*', require_all=False,
require_any=False, *, warn_drop_trains_frac=1.):
"""Select a subset of sources and keys from this data.
There are four possible ways to select data:
1. With two glob patterns (see below) for source and key names::
# Select data in the image group for any detector sources
sel = run.select('*/DET/*', 'image.*')
2. With an iterable of source glob patterns, or (source, key) patterns::
# Select image.data and image.mask for any detector sources
sel = run.select([('*/DET/*', 'image.data'), ('*/DET/*', 'image.mask')])
# Select & align undulator & XGM devices
sel = run.select(['*XGM/*', 'MID_XTD1_UND/DOOCS/ENERGY'], require_all=True)
Data is included if it matches any of the pattern pairs.
3. With a dict of source names mapped to sets of key names
(or empty sets to get all keys)::
# Select image.data from one detector source, and all data from one XGM
sel = run.select({'SPB_DET_AGIPD1M-1/DET/0CH0:xtdf': {'image.data'},
'SA1_XTD2_XGM/XGM/DOOCS': set()})
Unlike the others, this option *doesn't* allow glob patterns.
It's a more precise but less convenient option for code that knows
exactly what sources and keys it needs.
4. With an existing DataCollection, SourceData or KeyData object::
# Select the same data contained in another DataCollection
prev_run.select(sel)
The optional `require_all` and `require_any` arguments restrict the
trains to those for which all or at least one selected sources and
keys have at least one data entry. By default, all trains remain selected.
With `require_all=True`, a warning will be shown if there are no trains
with all the required data. Setting `warn_drop_trains_frac` can show the
same warning if there are a few remaining trains. This is a number 0-1
representing the fraction of trains dropped for one source (default 1).
Returns a new :class:`DataCollection` object for the selected data.
.. note::
'Glob' patterns may be familiar from selecting files in a Unix shell.
``*`` matches anything, so ``*/DET/*`` selects sources with "/DET/"
anywhere in the name. There are several kinds of wildcard:
- ``*``: anything
- ``?``: any single character
- ``[xyz]``: one character, "x", "y" or "z"
- ``[0-9]``: one digit character
- ``[!xyz]``: one character, *not* x, y or z
Anything else in the pattern must match exactly. It's case-sensitive,
so "x" does not match "X".
"""
if isinstance(seln_or_source_glob, str):
seln_or_source_glob = [(seln_or_source_glob, key_glob)]
sources_data = self._expand_selection(seln_or_source_glob)
if require_all or require_any:
# Select only those trains for which all (require_all) or at
# least one (require_any) selected sources and keys have
# data, i.e. have a count > 0 in their respective INDEX
# section.
if require_all:
train_ids = self.train_ids
else: # require_any
# Empty list would be converted to np.float64 array.
train_ids = np.empty(0, dtype=np.uint64)
for source, srcdata in sources_data.items():
n_trains_prev = len(train_ids)
for group in srcdata.index_groups:
source_tids = np.empty(0, dtype=np.uint64)
for f in self._sources_data[source].files:
valid = True if self.inc_suspect_trains else f.validity_flag
# Add the trains with data in each file.
_, counts = f.get_index(source, group)
source_tids = np.union1d(
f.train_ids[valid & (counts > 0)], source_tids
)
# Remove any trains previously selected, for which this
# selected source and key group has no data.
if require_all:
train_ids = np.intersect1d(train_ids, source_tids)
else: # require_any
train_ids = np.union1d(train_ids, source_tids)
n_drop = n_trains_prev - len(train_ids)
if n_trains_prev and (n_drop / n_trains_prev) >= warn_drop_trains_frac:
warn(f"{n_drop}/{n_trains_prev} ({n_drop / n_trains_prev :.0%})"
f" trains dropped when filtering by {source}")
train_ids = list(train_ids) # Convert back to a list.
sources_data = {
src: srcdata._only_tids(train_ids)
for src, srcdata in sources_data.items()
}
else:
train_ids = self.train_ids
files = set().union(*[sd.files for sd in sources_data.values()])
return DataCollection(
files, sources_data, train_ids=train_ids, aliases=self._aliases,
inc_suspect_trains=self.inc_suspect_trains,
is_single_run=self.is_single_run
)
def deselect(self, seln_or_source_glob, key_glob='*'):
"""Select everything except the specified sources and keys.
This takes the same arguments as :meth:`select`, but the sources and
keys you specify are dropped from the selection.
Returns a new :class:`DataCollection` object for the remaining data.
"""
if isinstance(seln_or_source_glob, str):
seln_or_source_glob = [(seln_or_source_glob, key_glob)]
deselection = self._expand_selection(seln_or_source_glob)
# Subtract deselection from selection on self
sources_data = {}
for source, srcdata in self._sources_data.items():
if source not in deselection:
sources_data[source] = srcdata
continue
desel_keys = deselection[source].sel_keys
if desel_keys is None:
continue # Drop the entire source
remaining_keys = srcdata.keys() - desel_keys
if remaining_keys:
sources_data[source] = srcdata.select_keys(remaining_keys)
files = set().union(*[sd.files for sd in sources_data.values()])
return DataCollection(
files, sources_data=sources_data, train_ids=self.train_ids,
aliases=self._aliases, inc_suspect_trains=self.inc_suspect_trains,
is_single_run=self.is_single_run,
)
def select_trains(self, train_range):
"""Select a subset of trains from this data.
Slice trains by position within this data::
sel = run.select_trains(np.s_[:5])
Or select trains by train ID, with a slice or a list::
from extra_data import by_id
sel1 = run.select_trains(by_id[142844490 : 142844495])
sel2 = run.select_trains(by_id[[142844490, 142844493, 142844494]])
Returns a new :class:`DataCollection` object for the selected trains.
Raises
------
ValueError
If given train IDs do not overlap with the trains in this data.
"""
new_train_ids = select_train_ids(self.train_ids, train_range)
sources_data = {
src: srcdata._only_tids(new_train_ids)
for src, srcdata in self._sources_data.items()
}
files = set().union(*[sd.files for sd in sources_data.values()])
return DataCollection(
files, sources_data=sources_data, train_ids=new_train_ids,
aliases=self._aliases, inc_suspect_trains=self.inc_suspect_trains,
is_single_run=self.is_single_run,
)
def split_trains(self, parts=None, trains_per_part=None):
"""Split this data into chunks with a fraction of the trains each.
Either *parts* or *trains_per_part* must be specified.
This returns an iterator yielding new :class:`DataCollection` objects.
The parts will have similar sizes, e.g. splitting 11 trains
with ``trains_per_part=8`` will produce 5 & 6 trains, not 8 & 3.
Parameters
----------
parts: int
How many parts to split the data into. If trains_per_part is also
specified, this is a minimum, and it may make more parts.
It may also make fewer if there are fewer trains in the data.
trains_per_part: int
A maximum number of trains in each part. Parts will often have
fewer trains than this.
"""
for source in self._sources_data.values():
assert source.train_ids == self.train_ids
def dict_zip(iter_d):
while True:
try:
yield {k: next(v) for (k, v) in iter_d.items()}
except StopIteration:
return
for sources_data_part in dict_zip({
n: s.split_trains(parts=parts, trains_per_part=trains_per_part)
for (n, s) in self._sources_data.items()
}):
files = set().union(*[sd.files for sd in sources_data_part.values()])
train_ids = list(sources_data_part.values())[0].train_ids
yield DataCollection(
files, sources_data=sources_data_part, train_ids=train_ids,
aliases=self._aliases, inc_suspect_trains=self.inc_suspect_trains,
is_single_run=self.is_single_run,
)
def _check_source_conflicts(self):
"""Check for data with the same source and train ID in different files.
"""
sources_with_conflicts = set()
files_conflict_cache = {}
def files_have_conflict(files):
fset = frozenset({f.filename for f in files})
if fset not in files_conflict_cache:
if self.inc_suspect_trains:
tids = np.concatenate([f.train_ids for f in files])
else:
tids = np.concatenate([f.valid_train_ids for f in files])
files_conflict_cache[fset] = len(np.unique(tids)) != len(tids)
return files_conflict_cache[fset]
for source, srcdata in self._sources_data.items():
if files_have_conflict(srcdata.files):
sources_with_conflicts.add(source)
if sources_with_conflicts:
raise ValueError("{} sources have conflicting data "
"(same train ID in different files): {}".format(
len(sources_with_conflicts), ", ".join(sources_with_conflicts)
))
def _expand_trainids(self, counts, trainIds):
n = min(len(counts), len(trainIds))
return np.repeat(trainIds[:n], counts.astype(np.intp)[:n])
def _find_data_chunks(self, source, key):
"""Find contiguous chunks of data for the given source & key
Yields DataChunk objects.
"""
return self._get_key_data(source, key)._data_chunks
def _find_data(self, source, train_id) -> Tuple[FileAccess, int]:
for f in self._sources_data[source].files:
ixs = (f.train_ids == train_id).nonzero()[0]
if self.inc_suspect_trains and ixs.size > 0:
return f, ixs[0]
for ix in ixs:
if f.validity_flag[ix]:
return f, ix
return None, None
def __repr__(self):
return f"<extra_data.DataCollection for {len(self.all_sources)} " \
f"sources and {len(self.train_ids)} trains>"
def info(self, details_for_sources=()):
"""Show information about the selected data.
"""
details_sources_re = [re.compile(fnmatch.translate(p))
for p in details_for_sources]
# time info
train_count = len(self.train_ids)
if train_count == 0:
first_train = last_train = '-'
span_txt = '0.0'
else:
first_train = self.train_ids[0]
last_train = self.train_ids[-1]
seconds, deciseconds = divmod((last_train - first_train + 1), 10)
try:
td = datetime.timedelta(seconds=int(seconds))
except OverflowError: # Can occur if a train ID is corrupted
span_txt = "OverflowError (one or more train IDs are probably wrong)"
else:
span_txt = f'{td}.{int(deciseconds)}'
# disp
print('# of trains: ', train_count)
print('Duration: ', span_txt)
print('First train ID:', first_train)
print('Last train ID: ', last_train)
print()
if not details_for_sources:
# Include summary section for multi-module detectors unless
# source details are enabled.
sources_by_detector = {}
for source in self.detector_sources:
name, modno = DETECTOR_SOURCE_RE.match(source).groups((1, 2))
sources_by_detector.setdefault(name, {})[modno] = source
for detector_name in sorted(sources_by_detector.keys()):
detector_modules = sources_by_detector[detector_name]
print("{} XTDF detector modules of {}/*".format(
len(detector_modules), detector_name
))
if len(detector_modules) > 0:
# Show detail on the first module (the others should be similar)
mod_key = sorted(detector_modules)[0]
mod_source = detector_modules[mod_key]
dinfo = self.detector_info(mod_source)
module = ' '.join(mod_key)
dims = ' x '.join(str(d) for d in dinfo['dims'])
print(" e.g. module {} : {} pixels".format(module, dims))
print(" {}".format(mod_source))
print(" {} frames per train, up to {} frames total".format(
dinfo['frames_per_train'], dinfo['total_frames']
))
print()
# Invert aliases for faster lookup.
src_aliases = defaultdict(set)
srckey_aliases = defaultdict(lambda: defaultdict(set))
for alias, literal in self._aliases.items():
if isinstance(literal, str):
src_aliases[literal].add(alias)
else:
srckey_aliases[literal[0]][literal[1]].add(alias)
def src_alias_list(s):
if src_aliases[s]:
alias_str = ', '.join(src_aliases[s])
return f'<{alias_str}>'
return ''
def src_data_detail(s, keys, prefix=''):
"""Detail for how much data is present for an instrument group"""
if not keys:
return
counts = self.get_data_counts(s, list(keys)[0])
ntrains_data = (counts > 0).sum()
print(
f'{prefix}data for {ntrains_data} trains '
f'({ntrains_data / train_count:.2%}), '
f'up to {counts.max()} entries per train'
)
def keys_detail(s, keys, prefix=''):
"""Detail for a group of keys"""
for k in keys:
entry_shape = self.get_entry_shape(s, k)
if entry_shape:
entry_info = f", entry shape {entry_shape}"
else:
entry_info = ""
dt = self.get_dtype(s, k)
if k in srckey_aliases[s]:
alias_str = ' <' + ', '.join(srckey_aliases[s][k]) + '>'
else:
alias_str = ''
print(f"{prefix}{k}{alias_str}\t[{dt}{entry_info}]")
if details_for_sources:
# All instrument sources with details enabled.
displayed_inst_srcs = self.instrument_sources - self.legacy_sources.keys()
print(len(displayed_inst_srcs), 'instrument sources:')
else:
# Only non-XTDF instrument sources without details enabled.
displayed_inst_srcs = self.instrument_sources - self.detector_sources - self.legacy_sources.keys()
print(len(displayed_inst_srcs), 'instrument sources (excluding XTDF detectors):')
for s in sorted(displayed_inst_srcs):
print(' -', s, src_alias_list(s))
if not any(p.match(s) for p in details_sources_re):
continue
# Detail for instrument sources:
for group, keys in groupby(sorted(self.keys_for_source(s)),
key=lambda k: k.split('.')[0]):
print(f' - {group}:')
keys = list(keys)
src_data_detail(s, keys, prefix=' ')
keys_detail(s, keys, prefix=' - ')
print()
print(len(self.control_sources), 'control sources:')
for s in sorted(self.control_sources):
print(' -', s, src_alias_list(s))
if any(p.match(s) for p in details_sources_re):
# Detail for control sources: list keys
ctrl_keys = self[s].keys(inc_timestamps=False)
print(' - Control keys (1 entry per train):')
keys_detail(s, sorted(ctrl_keys), prefix=' - ')
run_keys = self._sources_data[s].files[0].get_run_keys(s)
run_keys = {k[:-6] for k in run_keys if k.endswith('.value')}
run_only_keys = run_keys - ctrl_keys
if run_only_keys:
print(' - Additional run keys (1 entry per run):')
for k in sorted(run_only_keys):
if k in srckey_aliases[s]:
alias_str = ' <' + ', '.join(srckey_aliases[s][k]) + '>'
else:
alias_str = ''
ds = self._sources_data[s].files[0].file[
f"/RUN/{s}/{k.replace('.', '/')}/value"
]
entry_shape = ds.shape[1:]
if entry_shape:
entry_info = f", entry shape {entry_shape}"
else:
entry_info = ""
dt = ds.dtype
if h5py.check_string_dtype(dt):
dt = 'string'
print(f" - {k}{alias_str}\t[{dt}{entry_info}]")
print()
if self.legacy_sources:
# Collect legacy souces matching DETECTOR_SOURCE_RE
# separately for a condensed view.
detector_legacy_sources = defaultdict(set)
print(len(self.legacy_sources), 'legacy source names:')
for s in sorted(self.legacy_sources.keys()):
m = DETECTOR_SOURCE_RE.match(s)
if m is not None:
detector_legacy_sources[m[1]].add(s)
else:
# Only print non-XTDF legacy sources.
print(' -', s, '->', self.legacy_sources[s])
for legacy_det, legacy_sources in detector_legacy_sources.items():
canonical_mod = self.legacy_sources[next(iter(legacy_sources))]
canonical_det = DETECTOR_SOURCE_RE.match(canonical_mod)[1]
print(' -', f'{legacy_det}/*', '->', f'{canonical_det}/*',
f'({len(legacy_sources)})')
print()
def plot_missing_data(self, min_saved_pct=95, expand_instrument=False):
"""Plot sources that have missing data for some trains.
Example output:
.. image:: _static/plot_missing_data.png
Parameters
----------
min_saved_pct: int or float, optional
Only show sources with less than this percentage of trains saved.
expand_instrument: bool, optional
Show subsections within INSTRUMENT groups. These sections usually
have the same data missing, but it's possible for them to differ.
"""
n_trains = len(self.train_ids)
# Helper function that returns an alias for a source if one is
# available, and the source name otherwise.
def best_src_name(src):
for alias, alias_ident in self._aliases.items():
if isinstance(alias_ident, str) and alias_ident == src:
return alias
return src
# Check how much data is missing for each source
run_tids = np.array(self.train_ids)
start = time.time()
counts = { }
for src in self.all_sources:
srcdata = self[src]
if expand_instrument and srcdata.is_instrument:
for group in srcdata.index_groups:
counts[f"{best_src_name(src)} {group}.*"] = \
srcdata.data_counts(labelled=False, index_group=group)
else:
counts[best_src_name(src)] = srcdata.data_counts(labelled=False)
# Warn the user if the function will take longer than a couple seconds
if start is not None and (time.time() - start) > 2:
print(f"Checking sources in {len(self.files)} files, this may take a minute...")
# Set the start time to a dummy value so the message will
# never be printed again.
start = None
# Identify the sources with less than min_saved_pct% of trains
flaky_sources = {}
save_pcts = {}
for name, cnt in counts.items():
src_tids = run_tids[cnt > 0]
save_pct = len(src_tids) / n_trains * 100
if save_pct <= min_saved_pct:
flaky_sources[name] = src_tids
save_pcts[name] = save_pct
# Sort the flaky sources by decreasing order of how many trains they're missing
flaky_sources = dict(sorted(
flaky_sources.items(), key=lambda x: (len(x[1]), x[0]), reverse=True
))
# Plot missing data
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
fig, ax = plt.subplots(figsize=(9, max(3, len(flaky_sources) / 3.5)))
bar_height = 0.5
for i, src in enumerate(flaky_sources):
# First find all the trains that are missing
save_line = np.zeros(n_trains).astype(bool)
save_line[np.intersect1d(self.train_ids, flaky_sources[src], return_indices=True)[1]] = True
# Loop over each train to find blocks of trains that are either
# present or missing.
bars = { }
block_start = 0
for idx in range(n_trains):
if save_line[idx] != save_line[block_start]:
# If we find a train that doesn't match the save status of
# the current block, create a new entry in `bars` to record
# the start index, the block length, and the save status.
bars[(block_start, idx - block_start)] = save_line[block_start]
block_start = idx
# Add the last block
bars[(block_start, n_trains - block_start)] = save_line[block_start]
# Plot all the blocks
ax.broken_barh(bars.keys(),
(i, bar_height),
color=["deeppink" if x else "k" for x in bars.values()])
# Set labels and ticks
tick_labels = [f"{src} ({save_pcts[src]:.2f}%)"
for i, (src, tids) in enumerate(flaky_sources.items())]
ax.set_yticks(np.arange(len(flaky_sources)) + bar_height / 2,
labels=tick_labels, fontsize=8)
ax.set_xlabel("Train ID index")
# Set title
title = f"Sources with less than {min_saved_pct}% of trains saved"
run_meta = self.run_metadata()
if "proposalNumber" in run_meta and "runNumber" in run_meta:
title += f" in p{run_meta['proposalNumber']}, run {run_meta['runNumber']}"
ax.set_title(title, pad=25 + len(flaky_sources) * 0.25)
# Create legend
legend_elements = [Line2D([0], [0], marker='o', color='w', label=label,
markerfacecolor=c, markersize=6)
for c, label in [("k", "Missing"), ("deeppink", "Present")]]
# bbox_factor is a variable that tries to scale down the bounding box of
# the legend as the height of the plot grows with more sources. It's
# necessary because the bounding box coordinates are relative to the
# plot size, so with a tall plot the figure/legend padding will be
# massive. 7000 is a magic number that seems to give good results.
bbox_factor = 1 - len(flaky_sources) / 7000
ax.legend(handles=legend_elements,
bbox_to_anchor=(0, 1.02 * bbox_factor, 1, 0.1 * bbox_factor),
loc='lower center',
ncol=2, borderaxespad=0)
fig.tight_layout()
return ax
def detector_info(self, source):
"""Get statistics about the detector data.
Returns a dictionary with keys:
- 'dims' (pixel dimensions)
- 'frames_per_train' (estimated from one file)
- 'total_frames' (estimated assuming all trains have data)
"""
source_files = self._sources_data[source].files
file0 = sorted(source_files, key=lambda fa: fa.filename)[0]
_, counts = file0.get_index(source, 'image')
counts = set(np.unique(counts))
counts.discard(0)
if len(counts) > 1:
warn("Varying number of frames per train: %s" % counts)
if counts:
fpt = int(counts.pop())
else:
fpt = 0
dims = file0.file['/INSTRUMENT/{}/image/data'.format(source)].shape[-2:]
return {
'dims': dims,
# Some trains have 0 frames; max is the interesting value
'frames_per_train': fpt,
'total_frames': fpt * len(self.train_ids),
}
def train_info(self, train_id):
"""Show information about a specific train in the run.
Parameters
----------
train_id: int
The specific train ID you get details information.
Raises
------
ValueError
if `train_id` is not found in the run.
"""
if train_id not in self.train_ids:
raise ValueError("train {} not found in run.".format(train_id))
files = [f for f in self.files
if f.has_train_ids([train_id], self.inc_suspect_trains)]
ctrl = set().union(*[f.control_sources for f in files])
inst = set().union(*[f.instrument_sources for f in files])
# disp
print('Train [{}] information'.format(train_id))
print('Devices')
print('\tInstruments')
[print('\t-', d) for d in sorted(inst)] or print('\t-')
print('\tControls')
[print('\t-', d) for d in sorted(ctrl)] or print('\t-')
def train_timestamps(self, labelled=False, *, pydatetime=False, euxfel_local_time=False):
"""Get approximate timestamps for each train
Timestamps are stored and returned in UTC by default.
Older files (before format version 1.0) do not have timestamp data,
and the returned data in those cases will have the special value NaT
(Not a Time).
If *labelled* is True, they are returned in a pandas series, labelled
with train IDs. If *pydatetime* is True, a list of Python datetime
objects (truncated to microseconds) is returned, the same length as
data.train_ids. Otherwise (by default), timestamps are returned as a
NumPy array with datetime64 dtype.
*euxfel_local_time* can be True when either *labelled* or *pydatetime* is True.
In this case, timestamps are converted to the `Europe/Berlin` timezone.
"""
arr = np.zeros(len(self.train_ids), dtype=np.uint64)
id_to_ix = {tid: i for (i, tid) in enumerate(self.train_ids)}
missing_tids = np.array(self.train_ids)
for fa in self.files:
tids, file_ixs, _ = np.intersect1d(
fa.train_ids, missing_tids, return_indices=True
)
if not self.inc_suspect_trains:
valid = fa.validity_flag[file_ixs]
tids, file_ixs = tids[valid], file_ixs[valid]
if tids.size == 0 or 'INDEX/timestamp' not in fa.file:
continue
file_tss = fa.file['INDEX/timestamp'][:]
for tid, ts in zip(tids, file_tss[file_ixs]):
arr[id_to_ix[tid]] = ts
missing_tids = np.setdiff1d(missing_tids, tids)
if missing_tids.size == 0: # We've got a timestamp for every train
break
arr = arr.astype('datetime64[ns]')
epoch = np.uint64(0).astype('datetime64[ns]')
arr[arr == epoch] = 'NaT' # Not a Time
if labelled:
import pandas as pd
series = pd.Series(arr, index=self.train_ids).dt.tz_localize('UTC')
return series.dt.tz_convert('Europe/Berlin') if euxfel_local_time else series
elif pydatetime:
from datetime import datetime, timezone
res = []
for npdt in arr:
pydt = npdt.astype('datetime64[ms]').item()
if pydt is not None: # Numpy NaT becomes None
pydt = pydt.replace(tzinfo=timezone.utc)
if euxfel_local_time:
from zoneinfo import ZoneInfo
pydt = pydt.astimezone(ZoneInfo('Europe/Berlin'))
res.append(pydt)
return res
elif euxfel_local_time:
raise ValueError(
'The euxfel_local_time option '
+ 'can only be used if either labelled or pydatetime '
+ 'are set to True'
)
return arr
def run_metadata(self) -> dict:
"""Get a dictionary of metadata about the run
From file format version 1.0, the files capture: creationDate,
daqLibrary, dataFormatVersion, karaboFramework, proposalNumber,
runNumber, sequenceNumber, updateDate.
"""
if not self.is_single_run:
raise MultiRunError()
return self.files[0].metadata()
def write(self, filename):
"""Write the selected data to a new HDF5 file
You can choose a subset of the data using methods
like :meth:`select` and :meth:`select_trains`,
then use this write it to a new, smaller file.
The target filename will be overwritten if it already exists.
"""
from .writer import FileWriter
FileWriter(filename, self).write()
def write_virtual(self, filename):
"""Write an HDF5 file with virtual datasets for the selected data.
This doesn't copy the data, but each virtual dataset provides a view of
data spanning multiple sequence files, which can be accessed as if it
had been copied into one big file.
This is *not* the same as `building virtual datasets to combine
multi-module detector data
<https://rtd.xfel.eu/docs/data-analysis-user-documentation/en/latest/datafiles.html#combining-detector-data-from-multiple-modules>`__.
See :doc:`agipd_lpd_data` for that.
Creating and reading virtual datasets requires HDF5 version 1.10.
The target filename will be overwritten if it already exists.
"""
from .writer import VirtualFileWriter
VirtualFileWriter(filename, self).write()
def get_virtual_dataset(self, source, key, filename=None):
"""Create an HDF5 virtual dataset for a given source & key
A dataset looks like a multidimensional array, but the data is loaded
on-demand when you access it. So it's suitable as an
interface to data which is too big to load entirely into memory.
This returns an h5py.Dataset object. This exists in a real file as a
'virtual dataset', a collection of links pointing to the data in real
datasets. If *filename* is passed, the file is written at that path,
overwriting if it already exists. Otherwise, it uses a new temp file.
To access the dataset from other worker processes, give them the name
of the created file along with the path to the dataset inside it
(accessible as ``ds.name``). They will need at least HDF5 1.10 to access
the virtual dataset, and they must be on a system with access to the
original data files, as the virtual dataset points to those.
"""
self._check_field(source, key)
from .writer import VirtualFileWriter
if filename is None:
# Make a temp file to hold the virtual dataset.
fd, filename = tempfile.mkstemp(suffix='-karabo-data-vds.h5')
os.close(fd)
vfw = VirtualFileWriter(filename, self)
vfw.write_train_ids()
ds_path = vfw.add_dataset(source, key)
vfw.write_indexes()
vfw.write_metadata()
vfw.set_writer()
vfw.file.close() # Close the file for writing and reopen read-only
f = h5py.File(filename, 'r')
return f[ds_path]
class TrainIterator:
"""Iterate over trains in a collection of data
Created by :meth:`DataCollection.trains`.
"""
def __init__(
self, data, require_all=True, flat_keys=False, keep_dims=False):
self.data = data
self.require_all = require_all
self.keep_dims = keep_dims
# {(source, key): (f, dataset)}
self._datasets_cache = {}
self._set_result = self._set_result_flat if flat_keys \
else self._set_result_nested
@staticmethod
def _set_result_nested(res, source, key, value):
try:
res[source][key] = value
except KeyError:
res[source] = {key: value}
@staticmethod
def _set_result_flat(res, source, key, value):
res[(source, key)] = value
def _find_data(self, source, key, tid):
file, ds = self._datasets_cache.get((source, key), (None, None))
if ds:
ixs = (file.train_ids == tid).nonzero()[0]
if self.data.inc_suspect_trains and ixs.size > 0:
return file, ixs[0], ds
for ix in ixs:
if file.validity_flag[ix]:
return file, ix, ds
data = self.data
section = 'CONTROL' if source in data.control_sources else 'INSTRUMENT'
path = '/{}/{}/{}'.format(section, source, key.replace('.', '/'))
f, pos = data._find_data(source, tid)
if f is not None:
ds = f.file[path]
self._datasets_cache[(source, key)] = (f, ds)
return f, pos, ds
return None, None, None
def _assemble_data(self, tid):
res = {}
for source in self.data.control_sources:
self._set_result(res, source, 'metadata',
{'source': source, 'timestamp.tid': tid})
for key in self.data.keys_for_source(source):
file, pos, ds = self._find_data(source, key, tid)
if ds is None:
continue
firsts, counts = file.get_index(source, '')
first, count = firsts[pos], counts[pos]
if not count:
continue
self._set_result(res, source, key, ds[first])
for source in self.data.instrument_sources:
self._set_result(res, source, 'metadata',
{'source': source, 'timestamp.tid': tid})
for key in self.data.keys_for_source(source):
file, pos, ds = self._find_data(source, key, tid)
if ds is None:
continue
group = key.partition('.')[0]
firsts, counts = file.get_index(source, group)
first, count = firsts[pos], counts[pos]
if count == 1 and not self.keep_dims:
self._set_result(res, source, key, ds[first])
elif count > 0:
self._set_result(res, source, key,
ds[first : first + count])
return res
def __iter__(self):
for tid in self.data.train_ids:
tid = int(tid) # Convert numpy int to regular Python int
if self.require_all and self.data._check_data_missing(tid):
continue
yield tid, self._assemble_data(tid)
def H5File(path, *, inc_suspect_trains=True):
"""Open a single HDF5 file generated at European XFEL.
::
file = H5File("RAW-R0017-DA01-S00000.h5")
Returns a :class:`DataCollection` object.
Parameters
----------
path: str
Path to the HDF5 file
inc_suspect_trains: bool
If False, suspect train IDs within a file are skipped.
In newer files, trains where INDEX/flag are 0 are suspect. For older
files which don't have this flag, out-of-sequence train IDs are suspect.
If True (default), it tries to include these trains.
"""
return DataCollection.from_path(path, inc_suspect_trains=inc_suspect_trains)
def RunDirectory(
path, include='*', file_filter=locality.lc_any, *, inc_suspect_trains=True,
parallelize=True, _use_voview=True,
):
"""Open a European XFEL run directory.
::
run = RunDirectory("/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0001")
A run directory contains a number of HDF5 files with data from the
same time period.
Returns a :class:`DataCollection` object.
Parameters
----------
path: str
Path to the run directory containing HDF5 files.
include: str
Wildcard string to filter data files.
file_filter: callable
Function to subset the list of filenames to open.
Meant to be used with functions in the extra_data.locality module.
inc_suspect_trains: bool
If False, suspect train IDs within a file are skipped.
In newer files, trains where INDEX/flag are 0 are suspect. For older
files which don't have this flag, out-of-sequence train IDs are suspect.
If True (default), it tries to include these trains.
parallelize: bool
Enable or disable opening files in parallel. Particularly useful if
creating child processes is not allowed (e.g. in a daemonized
:class:`multiprocessing.Process`).
"""
files = [f for f in os.listdir(path)
if f.endswith('.h5') and (f.lower() != 'overview.h5')]
files = [osp.join(path, f) for f in fnmatch.filter(files, include)]
sel_files = file_filter(files)
if not sel_files:
raise FileNotFoundError(
f"No HDF5 files found in {path} with glob pattern {include}")
if _use_voview and (sel_files == files):
voview_file_acc = voview.find_file_valid(path)
if voview_file_acc is not None:
return DataCollection([voview_file_acc],
is_single_run=True,
ctx_closes=True)
files_map = RunFilesMap(path)
t0 = time.monotonic()
d = DataCollection.from_paths(
sel_files, files_map, inc_suspect_trains=inc_suspect_trains,
is_single_run=True, parallelize=parallelize
)
log.debug("Opened run with %d files in %.2g s",
len(d.files), time.monotonic() - t0)
files_map.save(d.files)
return d
# RunDirectory was previously RunHandler; we'll leave it accessible in case
# any code was already using it.
RunHandler = RunDirectory
DEFAULT_ALIASES_FILE = "{}/usr/extra-data-aliases.yml"
def open_run(
proposal, run, data='default', include='*', file_filter=locality.lc_any, *,
inc_suspect_trains=True, parallelize=True, aliases=DEFAULT_ALIASES_FILE,
_use_voview=True,
):
"""Access European XFEL data by proposal and run number.
::
run = open_run(proposal=700000, run=1)
Returns a :class:`DataCollection` object. This finds the run directory in
standard paths on EuXFEL infrastructure.
Parameters
----------
proposal: str, int
A proposal number, such as 2012, '2012', 'p002012', or a path such as
'/gpfs/exfel/exp/SPB/201701/p002012'.
run: str, int
A run number such as 243, '243' or 'r0243'.
data: str or Sequence of str
'raw', 'proc' (processed), or any other location relative to the
proposal path with data per run to access. May also be 'default'
(combining raw & proc), 'all' (combined but preferring proc where source
names match) or a sequence of strings to load data from
several locations, with later locations overwriting sources present
in earlier ones.
include: str
Wildcard string to filter data files.
file_filter: callable
Function to subset the list of filenames to open.
Meant to be used with functions in the extra_data.locality module.
inc_suspect_trains: bool
If False, suspect train IDs within a file are skipped.
In newer files, trains where INDEX/flag are 0 are suspect. For older
files which don't have this flag, out-of-sequence train IDs are suspect.
If True (default), it tries to include these trains.
parallelize: bool
Enable or disable opening files in parallel. Particularly useful if
creating child processes is not allowed (e.g. in a daemonized
:class:`multiprocessing.Process`).
aliases: str, Path
Path to an alias file for the run, see the documentation for
:meth:`DataCollection.with_aliases` for details. If the
argument is a string with a format argument like
``{}/path/to/aliases.yml``, then the format argument will be replaced with
the proposal directory path. By default it looks for a file named
``{}/usr/extra-data-aliases.yml``.
"""
absence_ok = set()
if data == 'default':
data = ['proc', 'raw']
absence_ok = {'proc'}
elif data == 'all':
data = ['raw', 'proc']
if isinstance(data, Sequence) and not isinstance(data, str):
base_dc = None
for origin in data:
try:
# Attempt to open data at this origin, but this may not
# exist.
origin_dc = open_run(
proposal, run, data=origin, include=include,
file_filter=file_filter, inc_suspect_trains=inc_suspect_trains,
parallelize=parallelize, aliases=aliases, _use_voview=_use_voview,
)
except FileNotFoundError:
if origin not in absence_ok:
if base_dc is None:
raise
warn(f'No data available for this run at origin {origin}')
continue
if base_dc is None: # First origin found
base_dc = origin_dc
continue
# Deselect to those sources in the base not present in
# this origin.
base_extra = base_dc.deselect(
[(src, '*') for src
in base_dc.all_sources & origin_dc.all_sources])
if base_extra.files:
# If base is not a subset of this origin, merge the
# "extra" base sources into the origin sources and
# re-enable is_single_run flag.
base_dc = origin_dc.union(base_extra)
base_dc.is_single_run = True
else:
# If the sources we previously found are a subset of those
# in the latest origin, discard the previous data.
base_dc = origin_dc
return base_dc
if isinstance(proposal, str):
if ('/' not in proposal) and not proposal.startswith('p'):
proposal = 'p' + proposal.rjust(6, '0')
else:
# Allow integers, including numpy integers
proposal = 'p{:06d}'.format(index(proposal))
prop_dir = find_proposal(proposal)
if isinstance(run, str):
if run.startswith('r'):
run = run[1:]
else:
run = index(run) # Allow integers, including numpy integers
run = 'r' + str(run).zfill(4)
dc = RunDirectory(
osp.join(prop_dir, data, run), include=include, file_filter=file_filter,
inc_suspect_trains=inc_suspect_trains, parallelize=parallelize,
_use_voview=_use_voview,
)
# Normalize string arguments to be an absolute Path
if isinstance(aliases, str):
aliases = Path(aliases.format(prop_dir))
# If we're using the default aliases file and it doesn't exist, ignore it
# without throwing any errors.
default_aliases = Path(DEFAULT_ALIASES_FILE.format(prop_dir))
if aliases == default_aliases and not default_aliases.is_file():
aliases = None
if aliases is not None:
dc = dc.with_aliases(aliases)
log.info("Loading %d aliases from: %s", len(dc._aliases), aliases)
return dc
|