File: test_components.py

package info (click to toggle)
extra-data 1.20.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 952 kB
  • sloc: python: 10,421; makefile: 4
file content (791 lines) | stat: -rw-r--r-- 28,854 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
import dask.array as da
import h5py
import numpy as np
import os.path as osp
import platform
import pytest
from testpath import assert_isfile

from extra_data.reader import RunDirectory, H5File, by_id, by_index
from extra_data.components import (
    AGIPD1M, DSSC1M, LPD1M, JUNGFRAU, identify_multimod_detectors,
)


@pytest.mark.skipif(platform.architecture()[0] != '64bit', reason="Requires 64-bit architecture")
def test_get_array(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:3]))
    assert det.detector_name == 'FXE_DET_LPD1M-1'

    arr = det.get_array('image.data')
    assert arr.dtype == np.uint16
    assert arr.shape == (16, 3, 128, 256, 256)
    assert arr.dims == ('module', 'train', 'pulse', 'slow_scan', 'fast_scan')

    arr = det.get_array('image.data', pulses=by_index[:10], unstack_pulses=False)
    assert arr.shape == (16, 30, 256, 256)
    assert arr.dtype == np.uint16
    assert arr.dims == ('module', 'train_pulse', 'slow_scan', 'fast_scan')

    # fill value
    with pytest.raises(ValueError):
        det.get_array('image.data', fill_value=np.nan)
    
    arr = det.get_array('image.data', astype=np.float32)
    assert arr.dtype == np.float32


def test_get_array_pulse_id(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:3]))
    arr = det.get_array('image.data', pulses=by_id[0])
    assert arr.shape == (16, 3, 1, 256, 256)
    assert (arr.coords['pulse'] == 0).all()

    arr = det.get_array('image.data', pulses=by_id[:5])
    assert arr.shape == (16, 3, 5, 256, 256)

    # Empty selection
    arr = det.get_array('image.data', pulses=by_id[:0])
    assert arr.shape == (16, 0, 0, 256, 256)

    arr = det.get_array('image.data', pulses=by_id[122:])
    assert arr.shape == (16, 3, 6, 256, 256)

    arr = det.get_array('image.data', pulses=by_id[[1, 7, 22, 23]])
    assert arr.shape == (16, 3, 4, 256, 256)
    assert list(arr.coords['pulse']) == [1, 7, 22, 23]


@pytest.mark.skipif(platform.architecture()[0] != '64bit', reason="Requires 64-bit architecture")
def test_get_array_with_cell_ids(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:3]))
    arr = det.get_array('image.data', subtrain_index='cellId')
    assert arr.shape == (16, 3, 128, 256, 256)
    assert arr.dims == ('module', 'train', 'cell', 'slow_scan', 'fast_scan')

    arr = det.get_array('image.data', pulses=by_id[0], subtrain_index='cellId')
    assert arr.shape == (16, 3, 1, 256, 256)
    assert (arr.coords['cell'] == 0).all()


def test_get_array_pulse_indexes(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:3]))
    arr = det.get_array('image.data', pulses=by_index[0])
    assert arr.shape == (16, 3, 1, 256, 256)
    assert (arr.coords['pulse'] == 0).all()

    arr = det.get_array('image.data', pulses=by_index[:5])
    assert arr.shape == (16, 3, 5, 256, 256)

    # Empty selection
    arr = det.get_array('image.data', pulses=by_index[:0])
    assert arr.shape == (16, 0, 0, 256, 256)

    arr = det.get_array('image.data', pulses=by_index[122:])
    assert arr.shape == (16, 3, 6, 256, 256)

    arr = det.get_array('image.data', pulses=by_index[[1, 7, 22, 23]])
    assert arr.shape == (16, 3, 4, 256, 256)


def test_get_array_pulse_id_reduced_data(mock_reduced_spb_proc_run):
    run = RunDirectory(mock_reduced_spb_proc_run)
    det = AGIPD1M(run.select_trains(by_index[:3]))
    arr = det.get_array('image.data', pulses=by_id[0])
    assert arr.shape == (16, 3, 1, 512, 128)
    assert (arr.coords['pulse'] == 0).all()

    arr = det.get_array('image.data', pulses=by_id[:5])
    assert (arr.coords['pulse'] < 5).all()

    # Empty selection
    arr = det.get_array('image.data', pulses=by_id[:0])
    assert arr.shape == (16, 0, 0, 512, 128)

    arr = det.get_array('image.data', pulses=by_id[5:])
    assert (arr.coords['pulse'] >= 5).all()

    arr = det.get_array('image.data', pulses=by_id[[1, 7, 15, 23]])
    assert np.isin(arr.coords['pulse'], [1, 7, 15, 23]).all()


def test_get_array_pulse_indexes_reduced_data(mock_reduced_spb_proc_run):
    run = RunDirectory(mock_reduced_spb_proc_run)
    det = AGIPD1M(run.select_trains(by_index[:3]))
    arr = det.get_array('image.data', pulses=by_index[0])
    assert arr.shape == (16, 3, 1, 512, 128)
    assert (arr.coords['pulse'] == 0).all()

    arr = det.get_array('image.data', pulses=by_index[:5])
    assert (arr.coords['pulse'] < 5).all()

    # Empty selection
    arr = det.get_array('image.data', pulses=by_index[:0])
    assert arr.shape == (16, 0, 0, 512, 128)

    arr = det.get_array('image.data', pulses=np.s_[5:])
    assert (arr.coords['pulse'] >= 5).all()

    arr = det.get_array('image.data', pulses=by_index[[1, 7, 15, 23]])
    assert np.isin(arr.coords['pulse'], [1, 7, 15, 23]).all()

    arr = det.get_array('image.data', pulses=[1, 7, 15, 23])
    assert np.isin(arr.coords['pulse'], [1, 7, 15, 23]).all()


def test_get_array_gap(mock_lpd_mini_gap_run):
    run = RunDirectory(mock_lpd_mini_gap_run)
    det = LPD1M(run, modules=[0, 1])

    # All pulses
    arr = det.get_array('image.data')
    assert arr.shape == (2, 5, 10, 256, 256)
    np.testing.assert_array_equal(arr[1, :, 8, 0, 0], [1, 2, 0, 3, 4])

    # Selected pulses
    arr = det.get_array('image.data', pulses=[8])
    assert arr.shape == (2, 5, 1, 256, 256)
    np.testing.assert_array_equal(arr[1, :, 0, 0, 0], [1, 2, 0, 3, 4])


def test_get_array_roi(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:3]))
    assert det.detector_name == 'FXE_DET_LPD1M-1'

    arr = det.get_array('image.data', roi=np.s_[10:60, 100:200])
    assert arr.shape == (16, 3, 128, 50, 100)
    assert arr.dims == ('module', 'train', 'pulse', 'slow_scan', 'fast_scan')


def test_get_array_roi_dssc(mock_scs_run):
    run = RunDirectory(mock_scs_run)
    det = DSSC1M(run, modules=[3])

    arr = det.get_array('image.data', roi=np.s_[20:25, 40:52])
    assert arr.shape == (1, 128, 64, 5, 12)


@pytest.mark.skipif(platform.architecture()[0] != '64bit', reason="Requires 64-bit architecture")
def test_ndarray_module_gaps(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run, modules=[2]).select_trains(np.s_[:3])
    det_data = det['image.data']
    assert det_data.shape == (1, 128 * 3, 256, 256)
    assert det_data.ndarray().shape == (1, 128 * 3, 256, 256)

    arr_w_gaps = det_data.ndarray(module_gaps=True, fill_value=7)
    assert arr_w_gaps.shape == (16, 128 * 3, 256, 256)
    assert arr_w_gaps[:, 0, 0, 0].tolist() == ([7] * 2) + [0] + ([7] * 13)


def test_get_array_lpd_parallelgain(mock_lpd_parallelgain_run):
    run = RunDirectory(mock_lpd_parallelgain_run)
    det = LPD1M(run.select_trains(by_index[:2]), parallel_gain=True)
    assert det.detector_name == 'FXE_DET_LPD1M-1'

    arr = det.get_array('image.data')
    assert arr.shape == (16, 2, 3, 100, 256, 256)
    assert arr.dims == ('module', 'train', 'gain', 'pulse', 'slow_scan', 'fast_scan')
    np.testing.assert_array_equal(arr.coords['gain'], np.arange(3))
    np.testing.assert_array_equal(arr.coords['pulse'], np.arange(100))


def test_get_array_lpd_parallelgain_select_pulses(mock_lpd_parallelgain_run):
    run = RunDirectory(mock_lpd_parallelgain_run)
    det = LPD1M(run.select_trains(by_index[:2]), parallel_gain=True)
    assert det.detector_name == 'FXE_DET_LPD1M-1'

    arr = det.get_array('image.data', pulses=np.s_[:5])
    assert arr.shape == (16, 2, 3, 5, 256, 256)
    assert arr.dims == ('module', 'train', 'gain', 'pulse', 'slow_scan', 'fast_scan')
    np.testing.assert_array_equal(arr.coords['gain'], np.arange(3))
    np.testing.assert_array_equal(arr.coords['pulse'], np.arange(5))

    arr = det.get_array('image.data', pulses=by_id[:5])
    assert arr.shape == (16, 2, 3, 5, 256, 256)
    np.testing.assert_array_equal(arr.coords['pulse'], np.arange(5))


def test_get_array_jungfrau(mock_jungfrau_run):
    run = RunDirectory(mock_jungfrau_run)
    jf = JUNGFRAU(run.select_trains(by_index[:2]))
    assert jf.detector_name == 'SPB_IRDA_JF4M'

    arr = jf.get_array('data.adc')
    assert arr.shape == (8, 2, 16, 512, 1024)
    assert arr.dims == ('module', 'train', 'cell', 'slow_scan', 'fast_scan')
    np.testing.assert_array_equal(arr.coords['train'], [10000, 10001])

    arr = jf.get_array('data.adc', astype=np.float32)
    assert arr.dtype == np.float32

    assert jf['data.adc'].shape == (8, 2, 16, 512, 1024)
    assert jf['data.adc'].buffer_shape(
        module_gaps=True, roi=np.s_[:, :25, :35]
    ) == (8, 2, 16, 25, 35)


def test_jungfraus_first_modno(mock_jungfrau_run, mock_fxe_jungfrau_run):

    # Test SPB_IRDA_JF4M component by setting the first_modno to the default value 1.
    run = RunDirectory(mock_jungfrau_run)
    jf = JUNGFRAU(run.select_trains(by_index[:2]), first_modno=1)
    assert jf.detector_name == 'SPB_IRDA_JF4M'
    assert jf.n_modules == 8

    arr = jf.get_array('data.adc')
    assert np.all(arr['module'] == list(range(1, 9)))

    # Test FXE_XAD_JF500K component with and without setting first_modno to 3.
    for first_modno, modno in zip([1, 3], [3, 1]):
        run = RunDirectory(mock_fxe_jungfrau_run)
        jf = JUNGFRAU(
            run.select_trains(by_index[:2]),
            detector_name='FXE_XAD_JF500K',
            first_modno=first_modno,
        )
        assert jf.detector_name == 'FXE_XAD_JF500K'
        assert jf.n_modules == modno

        arr = jf.get_array('data.adc')
        assert np.all(arr['module'] == [modno])


def test_jungfrau_masked_data(mock_fxe_jungfrau_run):
    run = RunDirectory(mock_fxe_jungfrau_run)
    jf = JUNGFRAU(run, 'FXE_XAD_JF500K')

    # Default options
    kd = jf.masked_data().select_trains(np.s_[:1])
    arr = kd.ndarray()
    assert arr.shape == (1, 1, 16, 512, 1024)
    assert arr.dtype == np.float32
    line0 = np.zeros(1024, dtype=np.float32)
    line0[1:32] = np.nan
    np.testing.assert_array_equal(arr[0, 0, 0, 0, :], line0)

    # Xarray
    xarr = kd.xarray()
    assert xarr.dims[:2] == ('module', 'trainId')
    np.testing.assert_array_equal(xarr.values[0, 0, 0, 0, :], line0)

    # Specify which mask bits to use, & replace masked values with 99
    kd = jf.masked_data(mask_bits=1, masked_value=99).select_trains(np.s_[:1])
    arr = kd.ndarray()
    assert arr.shape == (1, 1, 16, 512, 1024)
    line0 = np.zeros(1024, dtype=np.float32)
    line0[1:32:2] = 99
    np.testing.assert_array_equal(arr[0, 0, 0, 0, :], line0)

    # Different field
    kd = jf.masked_data('data.gain', masked_value=255).select_trains(np.s_[:1])
    arr = kd.ndarray()
    assert arr.shape == (1, 1, 16, 512, 1024)
    assert arr.dtype == np.uint8
    line0 = np.zeros(1024, dtype=np.uint8)
    line0[1:32] = 255
    np.testing.assert_array_equal(arr[0, 0, 0, 0, :], line0)


def test_xtdf_masked_data(mock_reduced_spb_proc_run):
    run = RunDirectory(mock_reduced_spb_proc_run)
    agipd = AGIPD1M(run, modules=[8, 9])

    kd = agipd.masked_data().select_trains(np.s_[:1])
    assert kd.shape == (2, kd.shape[1], 512, 128)
    arr = kd.ndarray()
    assert arr.shape == kd.shape
    assert arr.dtype == np.float32
    line0_2mod = np.zeros((2, 128), dtype=np.float32)
    line0_2mod[1, 1:32] = np.nan
    np.testing.assert_array_equal(arr[:, 0, 0, :], line0_2mod)

    # Test with pulse selection (frames per train is consistent but arbitrary)
    kd_pulse_sel = kd.select_pulses(np.s_[:3])
    assert kd_pulse_sel.shape[1] <= 3
    assert kd_pulse_sel.ndarray().shape == kd_pulse_sel.shape

    kd = agipd.masked_data(mask_bits=[1, 4], masked_value=-1).select_trains(np.s_[:1])
    arr = kd.ndarray()
    line0_2mod = np.zeros((2, 128), dtype=np.float32)
    line0_2mod[1, np.nonzero(np.arange(32) & 5)] = -1
    np.testing.assert_array_equal(arr[:, 0, 0, :], line0_2mod)


def test_masked_data_raw_error(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    lpd = LPD1M(run)

    with pytest.raises(RuntimeError, match="image.mask"):
        lpd.masked_data()


def test_get_dask_array(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run)
    arr = det.get_dask_array('image.data', fill_value=42)

    assert isinstance(arr.data, da.Array)
    assert arr.shape == (16, 480 * 128, 1, 256, 256)
    assert arr.dtype == np.uint16
    assert arr.dims == ('module', 'train_pulse', 'dim_0', 'dim_1', 'dim_2')
    np.testing.assert_array_equal(arr.coords['module'], np.arange(16))
    np.testing.assert_array_equal(
        arr.coords['trainId'], np.repeat(np.arange(10000, 10480), 128)
    )
    np.testing.assert_array_equal(
        arr.coords['pulseId'], np.tile(np.arange(0, 128), 480)
    )

    arr_cellid = det.get_dask_array('image.data', subtrain_index='cellId')
    assert arr_cellid.coords['cellId'].shape == (480 * 128,)


def test_get_dask_array_reduced_data(mock_reduced_spb_proc_run):
    run = RunDirectory(mock_reduced_spb_proc_run)
    det = AGIPD1M(run)
    arr = det.get_dask_array('image.data')

    assert arr.shape[2:] == (512, 128)
    assert arr.dims == ('module', 'train_pulse', 'dim_0', 'dim_1')
    np.testing.assert_array_equal(arr.coords['module'], np.arange(16))
    assert np.isin(arr.coords['trainId'], np.arange(10000, 10480)).all()
    assert np.isin(arr.coords['pulseId'], np.arange(0, 20)).all()


def test_get_dask_array_lpd_parallelgain(mock_lpd_parallelgain_run):
    run = RunDirectory(mock_lpd_parallelgain_run)
    det = LPD1M(run.select_trains(by_index[:2]), parallel_gain=True)
    assert det.detector_name == 'FXE_DET_LPD1M-1'

    arr = det.get_dask_array('image.data')
    assert arr.shape == (16, 2 * 3 * 100, 1, 256, 256)
    assert arr.dims[:2] == ('module', 'train_pulse')
    np.testing.assert_array_equal(arr.coords['pulseId'], np.tile(np.arange(100), 6))


def test_get_dask_array_jungfrau(mock_jungfrau_run):
    run = RunDirectory(mock_jungfrau_run)
    jf = JUNGFRAU(run)
    assert jf.detector_name == 'SPB_IRDA_JF4M'

    arr = jf.get_dask_array('data.adc')
    assert arr.shape == (8, 100, 16, 512, 1024)
    assert arr.dims == ('module', 'train', 'cell', 'slow_scan', 'fast_scan')
    np.testing.assert_array_equal(arr.coords['train'], np.arange(10000, 10100))


def test_data_availability_lpd_gap(mock_lpd_mini_gap_run):
    run = RunDirectory(mock_lpd_mini_gap_run)
    det = LPD1M(run, modules=[0, 1])  # This example just contains 2 modules

    av = det.data_availability()
    assert av.shape == (2, 50)
    np.testing.assert_array_equal(av[1, 20:30], False)
    assert av.sum() == 2 * 50 - 10

    av_gaps = det.data_availability(module_gaps=True)
    assert av_gaps.shape == (16, 50)
    np.testing.assert_array_equal(av_gaps[2:], False)
    assert av_gaps.sum() == 2 * 50 - 10


def test_pulse_id_cell_id(mock_lpd_mini_gap_run):
    run = RunDirectory(mock_lpd_mini_gap_run)
    det = LPD1M(run, modules=[0, 1])  # This example just contains 2 modules
    kd = det['image.data']

    np.testing.assert_array_equal(
        kd.pulse_id_coordinates(), np.tile(np.arange(10), 5)
    )
    np.testing.assert_array_equal(
        kd.cell_id_coordinates(), np.tile(np.arange(10), 5)
    )

def test_pulse_id_cell_id_reduced(mock_reduced_spb_proc_run):
    run = RunDirectory(mock_reduced_spb_proc_run)
    det = AGIPD1M(run)
    kd = det['image.data']
    nframes = kd.shape[1]

    # The selected frames are random, so we don't know precisely the pattern
    assert kd.train_id_coordinates().shape == (nframes,)
    assert kd.pulse_id_coordinates().shape == (nframes,)
    assert kd.cell_id_coordinates().shape == (nframes,)


def test_jungfrau_cell_ids(mock_jungfrau_run):
    run = RunDirectory(mock_jungfrau_run)
    det = JUNGFRAU(run)
    cellids = det.cell_ids()

    assert cellids.shape == (16,)


def test_select_trains(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(np.s_[:20]))
    assert len(det.train_ids) == 20
    det = det.select_trains(np.s_[:2])
    assert len(det.train_ids) == 2

    arr = det.get_array('image.data')
    assert arr.shape == (16, 2, 128, 256, 256)


def test_keydata_select_trains(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(np.s_[:20]))
    kd = det['image.data']
    assert len(kd.train_ids) == 20
    assert kd.shape == (16, 20 * 128, 256, 256)
    kd = kd[:3]
    assert len(kd.train_ids) == 3
    assert kd.shape == (16, 3 * 128, 256, 256)

    with pytest.raises(TypeError):
        iter(kd)


def test_split_trains(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(np.s_[:20]))
    assert len(det.train_ids) == 20

    parts = list(det.split_trains(parts=4))
    assert len(parts) == 4
    assert [len(p.train_ids) for p in parts] == [5, 5, 5, 5]
    assert sum([p.train_ids for p in parts], []) == det.train_ids

    arr = parts[-1].get_array('image.data', pulses=np.s_[:1])
    assert arr.shape == (16, 5, 1, 256, 256)

    # Split by a number of frames
    parts = list(det.split_trains(frames_per_part=256))
    assert [len(p.train_ids) for p in parts] == [2] * 10

    # frames_per_part less than one train (128 frames in this example)
    parts = list(det.split_trains(frames_per_part=100))
    assert [len(p.train_ids) for p in parts] == [1] * 20

    # trains_per_part cuts off before frames_per_part
    parts = list(det.split_trains(trains_per_part=3, frames_per_part=1024))
    assert [len(p.train_ids) for p in parts] == ([3] * 6) + [2]

    # parts cuts off before frames_per_part
    parts = list(det.split_trains(parts=6, frames_per_part=1024))
    assert [len(p.train_ids) for p in parts] == ([3] * 6) + [2]

    # frames_per_part > all frames in selection
    parts = list(det.split_trains(frames_per_part=3000))
    assert [len(p.train_ids) for p in parts] == [20]


def test_split_trains_jungfrau(mock_jungfrau_run):
    run = RunDirectory(mock_jungfrau_run)
    jf = JUNGFRAU(run.select_trains(np.s_[:20]))
    assert jf.frames_per_train == 16

    parts = list(jf.split_trains(frames_per_part=64))
    assert [len(p.train_ids) for p in parts] == [4] * 5


def test_iterate(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:2]))
    it = iter(det.trains())
    tid, d = next(it)
    assert d['image.data'].shape == (16, 1, 128, 256, 256)
    assert d['image.data'].dims == ('module', 'train', 'pulse', 'slow_scan', 'fast_scan')

    tid, d = next(it)
    assert d['image.data'].shape == (16, 1, 128, 256, 256)

    with pytest.raises(StopIteration):
        next(it)


def test_iterate_pulse_id(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:3]))
    tid, d = next(iter(det.trains(pulses=by_id[0])))
    assert d['image.data'].shape == (16, 1, 1, 256, 256)

    tid, d = next(iter(det.trains(pulses=by_id[:5])))
    assert d['image.data'].shape == (16, 1, 5, 256, 256)

    tid, d = next(iter(det.trains(pulses=by_id[122:])))
    assert d['image.data'].shape == (16, 1, 6, 256, 256)

    tid, d = next(iter(det.trains(pulses=by_id[[1, 7, 22, 23]])))
    assert d['image.data'].shape == (16, 1, 4, 256, 256)
    assert list(d['image.data'].coords['pulse']) == [1, 7, 22, 23]


def test_iterate_pulse_index(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run.select_trains(by_index[:3]))
    tid, d = next(iter(det.trains(pulses=by_index[0])))
    assert d['image.data'].shape == (16, 1, 1, 256, 256)

    tid, d = next(iter(det.trains(pulses=by_index[:5])))
    assert d['image.data'].shape == (16, 1, 5, 256, 256)

    tid, d = next(iter(det.trains(pulses=by_index[122:])))
    assert d['image.data'].shape == (16, 1, 6, 256, 256)

    tid, d = next(iter(det.trains(pulses=by_index[[1, 7, 22, 23]])))
    assert d['image.data'].shape == (16, 1, 4, 256, 256)
    assert list(d['image.data'].coords['pulse']) == [1, 7, 22, 23]


def test_iterate_lpd_parallel_gain(mock_lpd_parallelgain_run):
    run = RunDirectory(mock_lpd_parallelgain_run)
    det = LPD1M(run.select_trains(by_index[:3]), parallel_gain=True)

    tid, d = next(iter(det.trains()))
    assert d['image.data'].shape == (16, 1, 3, 100, 256, 256)
    assert d['image.data'].dims == \
           ('module', 'train', 'gain', 'pulse', 'slow_scan', 'fast_scan')


def test_iterate_jungfrau(mock_jungfrau_run):
    run = RunDirectory(mock_jungfrau_run)
    jf = JUNGFRAU(run)

    tid, d = next(iter(jf.trains()))
    assert tid == 10000
    assert d['data.adc'].shape == (8, 16, 512, 1024)
    assert d['data.adc'].dims == ('module', 'cell', 'slow_scan', 'fast_scan')


def test_modern_corr_sources(mock_modern_spb_proc_run, mock_spb_raw_run_fmt1):
    run_raw = RunDirectory(mock_spb_raw_run_fmt1)
    run_proc = RunDirectory(mock_modern_spb_proc_run)
    combined = run_raw.union(run_proc.select("*/CORR/*:output"))

    corr_sources = {f'SPB_DET_AGIPD1M-1/CORR/{i}CH0:output' for i in range(16)}
    det_sources = {f'SPB_DET_AGIPD1M-1/DET/{i}CH0:xtdf' for i in range(16)}

    # Specify that we want raw data
    assert AGIPD1M(run_raw, raw=True).data.all_sources == det_sources
    with pytest.raises(Exception):
        AGIPD1M(run_proc, raw=True)
    agipd_raw = AGIPD1M(combined, raw=True)
    assert agipd_raw.data.all_sources == det_sources
    assert 'image.mask' not in agipd_raw

    # Specify that we want corrected data
    with pytest.raises(Exception):
        AGIPD1M(run_raw, raw=False)
    assert AGIPD1M(run_proc, raw=False).data.all_sources == corr_sources
    agipd_proc = AGIPD1M(combined, raw=False)
    assert agipd_proc.data.all_sources == corr_sources
    assert 'image.mask' in agipd_proc

    # Legacy behaviour: prefer corrected, allow raw if only that is found
    assert AGIPD1M(run_raw).data.all_sources == det_sources
    assert AGIPD1M(run_proc).data.all_sources == corr_sources
    agipd_dflt = AGIPD1M(combined)
    assert agipd_dflt.data.all_sources == corr_sources
    assert 'image.mask' in agipd_dflt


def test_write_virtual_cxi(mock_spb_proc_run, tmpdir):
    run = RunDirectory(mock_spb_proc_run)
    det = AGIPD1M(run)

    test_file = osp.join(str(tmpdir), 'test.cxi')
    det.write_virtual_cxi(test_file)
    assert_isfile(test_file)

    with h5py.File(test_file, 'r') as f:
        det_grp = f['entry_1/instrument_1/detector_1']
        ds = det_grp['data']
        assert isinstance(ds, h5py.Dataset)
        assert ds.is_virtual
        assert ds.shape[1:] == (16, 512, 128)
        assert 'axes' in ds.attrs

        assert len(ds.virtual_sources()) == 16

        # Check position of each source file in the modules dimension
        for src in ds.virtual_sources():
            start, _, block, count = src.vspace.get_regular_hyperslab()
            assert block[1] == 1
            assert count[1] == 1

            expected_file = 'CORR-R0238-AGIPD{:0>2}-S00000.h5'.format(start[1])
            assert osp.basename(src.file_name) == expected_file

        # Check presence of other datasets
        assert 'gain' in det_grp
        assert 'mask' in det_grp
        assert 'experiment_identifier' in det_grp

def test_write_virtual_cxi_some_modules(mock_spb_proc_run, tmpdir):
    run = RunDirectory(mock_spb_proc_run)
    det = AGIPD1M(run, modules=[3, 4, 8, 15])

    test_file = osp.join(str(tmpdir), 'test.cxi')
    det.write_virtual_cxi(test_file)
    assert_isfile(test_file)

    with h5py.File(test_file, 'r') as f:
        det_grp = f['entry_1/instrument_1/detector_1']
        ds = det_grp['data']
        assert ds.shape[1:] == (16, 512, 128)

def test_write_virtual_cxi_jungfrau(mock_jungfrau_run, tmpdir):
    run = RunDirectory(mock_jungfrau_run)
    det = JUNGFRAU(run)

    test_file = osp.join(str(tmpdir), 'test.cxi')
    det.write_virtual_cxi(test_file)
    assert_isfile(test_file)

    with h5py.File(test_file, 'r') as f:
        det_grp = f['entry_1/instrument_1/detector_1']
        ds = det_grp['data']
        assert isinstance(ds, h5py.Dataset)
        assert ds.is_virtual
        assert ds.shape[1:] == (8, 512, 1024)
        assert 'axes' in ds.attrs

        assert len(ds.virtual_sources()) == 8

        # Check position of each source file in the modules dimension
        for src in ds.virtual_sources():
            start, _, block, count = src.vspace.get_regular_hyperslab()
            assert block[1] == 1
            assert count[1] == 1

            expected_file = 'RAW-R0012-JNGFR{:0>2}-S00000.h5'.format(
                start[1] + 1)
            assert osp.basename(src.file_name) == expected_file

        # Check presence of other datasets
        assert 'gain' in det_grp
        assert 'mask' in det_grp
        assert 'experiment_identifier' in det_grp

def test_write_virtual_cxi_jungfrau_some_modules(mock_jungfrau_run, tmpdir):
    run = RunDirectory(mock_jungfrau_run)
    det = JUNGFRAU(run, modules=[2, 3, 4, 6])

    test_file = osp.join(str(tmpdir), 'test.cxi')
    det.write_virtual_cxi(test_file)
    assert_isfile(test_file)

    with h5py.File(test_file, 'r') as f:
        det_grp = f['entry_1/instrument_1/detector_1']
        ds = det_grp['data']
        assert ds.shape[1:] == (8, 512, 1024)
        np.testing.assert_array_equal(det_grp['module_identifier'][:], np.arange(1,9))

def test_write_virtual_cxi_raw_data(mock_fxe_raw_run, tmpdir, caplog):
    import logging
    caplog.set_level(logging.INFO)
    run = RunDirectory(mock_fxe_raw_run)
    det = LPD1M(run)

    test_file = osp.join(str(tmpdir), 'test.cxi')
    det.write_virtual_cxi(test_file)
    assert_isfile(test_file)

    with h5py.File(test_file, 'r') as f:
        det_grp = f['entry_1/instrument_1/detector_1']
        ds = det_grp['data']
        assert ds.shape[1:] == (16, 1, 256, 256)


def test_write_virtual_cxi_reduced_data(mock_reduced_spb_proc_run, tmpdir):
    run = RunDirectory(mock_reduced_spb_proc_run)
    det = AGIPD1M(run)

    test_file = osp.join(str(tmpdir), 'test.cxi')
    det.write_virtual_cxi(test_file)
    assert_isfile(test_file)

    with h5py.File(test_file, 'r') as f:
        det_grp = f['entry_1/instrument_1/detector_1']
        ds = det_grp['data']
        assert ds.shape[1:] == (16, 512, 128)


def test_write_selected_frames(mock_spb_raw_run, tmp_path):
    run = RunDirectory(mock_spb_raw_run)
    det = AGIPD1M(run)

    trains = np.repeat(np.arange(10000, 10006), 2)
    pulses = np.tile([0, 5], 6)
    test_file = tmp_path / 'sel_frames.h5'
    det.write_frames(test_file, trains, pulses)
    assert_isfile(test_file)

    with H5File(test_file) as f:
        np.testing.assert_array_equal(
            f.get_array('SPB_DET_AGIPD1M-1/DET/0CH0:xtdf', 'image.pulseId')[:, 0],
            pulses
        )
        assert f.instrument_sources == {
            f'SPB_DET_AGIPD1M-1/DET/{i}CH0:xtdf' for i in range(16)
        }

    # pytest leaves temp files for inspection, but these files are big enough
    # to be inconvenient, so delete them if the assertions have passed.
    test_file.unlink()


def test_write_selected_frames_proc(mock_spb_proc_run, tmp_path):
    run = RunDirectory(mock_spb_proc_run)
    det = AGIPD1M(run)

    trains = np.repeat(np.arange(10000, 10006), 2)
    pulses = np.tile([0, 7], 6)
    test_file = tmp_path / 'sel_frames.h5'
    det.write_frames(test_file, trains, pulses)
    assert_isfile(test_file)

    with H5File(test_file) as f:
        np.testing.assert_array_equal(
            f.get_array('SPB_DET_AGIPD1M-1/DET/0CH0:xtdf', 'image.pulseId'),
            pulses
        )
        assert f.instrument_sources == {
            f'SPB_DET_AGIPD1M-1/DET/{i}CH0:xtdf' for i in range(16)
        }

    # pytest leaves temp files for inspection, but these files are big enough
    # to be inconvenient, so delete them if the assertions have passed.
    test_file.unlink()

def test_identify_multimod_detectors(mock_fxe_raw_run):
    run = RunDirectory(mock_fxe_raw_run)
    name, cls = identify_multimod_detectors(run, single=True)
    assert name == 'FXE_DET_LPD1M-1'
    assert cls is LPD1M

    dets = identify_multimod_detectors(run, single=False)
    assert dets == {(name, cls)}


def test_identify_multimod_detectors_multi(mock_fxe_raw_run, mock_spb_raw_run):
    fxe_run = RunDirectory(mock_fxe_raw_run)
    spb_run = RunDirectory(mock_spb_raw_run)
    combined = fxe_run.select('*LPD1M*').union(spb_run)

    dets = identify_multimod_detectors(combined, single=False)
    assert dets == {('FXE_DET_LPD1M-1', LPD1M), ('SPB_DET_AGIPD1M-1', AGIPD1M)}

    with pytest.raises(ValueError):
        identify_multimod_detectors(combined, single=True)

    name, cls = identify_multimod_detectors(combined, single=True, clses=[AGIPD1M])
    assert name == 'SPB_DET_AGIPD1M-1'
    assert cls is AGIPD1M