1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
from datetime import datetime, timedelta, timezone
from itertools import islice
from warnings import catch_warnings
import h5py
import numpy as np
import os
import pandas as pd
import pytest
import stat
from tempfile import mkdtemp
from testpath import assert_isfile
from xarray import DataArray
from extra_data import (
H5File, RunDirectory, by_index, by_id,
SourceNameError, PropertyNameError, DataCollection, MultiRunError
)
def test_iterate_trains(mock_agipd_data, mock_control_data_with_empty_source):
with H5File(mock_agipd_data) as f:
for train_id, data in islice(f.trains(), 10):
assert train_id in range(10000, 10250)
assert 'SPB_DET_AGIPD1M-1/DET/7CH0:xtdf' in data
assert len(data) == 1
assert 'image.data' in data['SPB_DET_AGIPD1M-1/DET/7CH0:xtdf']
with H5File(mock_control_data_with_empty_source) as f:
# smoke test
tid, data = next(f.trains())
assert list(data['SA3_XTD10_VAC/GAUGE/G30520C'].keys()) == ['metadata']
def test_iterate_trains_flat_keys(mock_agipd_data):
with H5File(mock_agipd_data) as f:
for train_id, data in islice(f.trains(flat_keys=True), 10):
assert train_id in range(10000, 10250)
assert ('SPB_DET_AGIPD1M-1/DET/7CH0:xtdf', 'image.data') in data
def test_iterate_trains_keep_dims(mock_jungfrau_run):
run = RunDirectory(mock_jungfrau_run)
for _, data in islice(run.select(
'*JF4M/DET/*', 'data.adc'
).trains(keep_dims=True), 10):
assert data[
'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput']['data.adc'].shape == (
1, 16, 512, 1024)
def test_get_train_keep_dims(mock_jungfrau_run):
run = RunDirectory(mock_jungfrau_run)
_, data = run.select(
'*JF4M/DET/*', 'data.adc').train_from_index(0, keep_dims=True)
assert data[
'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput']["data.adc"].shape == (
1, 16, 512, 1024)
def test_get_train_bad_device_name(mock_spb_control_data_badname):
# Check that we can handle devices which don't have the standard Karabo
# name structure A/B/C.
with H5File(mock_spb_control_data_badname) as f:
train_id, data = f.train_from_id(10004)
assert train_id == 10004
device = 'SPB_IRU_SIDEMIC_CAM:daqOutput'
assert device in data
assert 'data.image.dims' in data[device]
dims = data[device]['data.image.dims']
assert list(dims) == [1000, 1000]
def test_detector_info_oldfmt(mock_agipd_data):
with H5File(mock_agipd_data) as f:
di = f.detector_info('SPB_DET_AGIPD1M-1/DET/7CH0:xtdf')
assert di['dims'] == (512, 128)
assert di['frames_per_train'] == 64
assert di['total_frames'] == 16000
def test_detector_info(mock_lpd_data):
with H5File(mock_lpd_data) as f:
di = f.detector_info('FXE_DET_LPD1M-1/DET/0CH0:xtdf')
assert di['dims'] == (256, 256)
assert di['frames_per_train'] == 128
assert di['total_frames'] == 128 * 480
def test_train_info(mock_lpd_data, capsys):
with H5File(mock_lpd_data) as f:
f.train_info(10004)
out, err = capsys.readouterr()
assert "Devices" in out
assert "FXE_DET_LPD1M-1/DET/0CH0:xtdf" in out
def test_info(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
run.info(details_for_sources='*/DOOCS/*') # Smoketest
def test_iterate_trains_fxe(mock_fxe_control_data):
with H5File(mock_fxe_control_data) as f:
for train_id, data in islice(f.trains(), 10):
assert train_id in range(10000, 10400)
assert 'SA1_XTD2_XGM/DOOCS/MAIN' in data.keys()
assert 'beamPosition.ixPos.value' in data['SA1_XTD2_XGM/DOOCS/MAIN']
assert 'data.image.pixels' in data['FXE_XAD_GEC/CAM/CAMERA:daqOutput']
assert 'data.image.pixels' not in data['FXE_XAD_GEC/CAM/CAMERA_NODATA:daqOutput']
def test_iterate_file_select_trains(mock_fxe_control_data):
with H5File(mock_fxe_control_data) as f:
tids = [tid for (tid, _) in f.trains(train_range=by_id[:10003])]
assert tids == [10000, 10001, 10002]
tids = [tid for (tid, _) in f.trains(train_range=by_index[-2:])]
assert tids == [10398, 10399]
def test_iterate_trains_select_keys(mock_fxe_control_data):
sel = {
'SA1_XTD2_XGM/DOOCS/MAIN': {
'beamPosition.ixPos.value',
'beamPosition.ixPos.timestamp',
}
}
with H5File(mock_fxe_control_data) as f:
for train_id, data in islice(f.trains(devices=sel), 10):
assert train_id in range(10000, 10400)
assert 'SA1_XTD2_XGM/DOOCS/MAIN' in data.keys()
assert 'beamPosition.ixPos.value' in data['SA1_XTD2_XGM/DOOCS/MAIN']
assert 'beamPosition.ixPos.timestamp' in data['SA1_XTD2_XGM/DOOCS/MAIN']
assert 'beamPosition.iyPos.value' not in data['SA1_XTD2_XGM/DOOCS/MAIN']
assert 'SA3_XTD10_VAC/TSENS/S30160K' not in data
def test_iterate_trains_require_all(mock_sa3_control_data):
with H5File(mock_sa3_control_data) as f:
trains_iter = f.trains(
devices=[('*/CAM/BEAMVIEW:daqOutput', 'data.image.dims')], require_all=True
)
tids = [t for (t, _) in trains_iter]
assert tids == []
trains_iter = f.trains(
devices=[('*/CAM/BEAMVIEW:daqOutput', 'data.image.dims')], require_all=False
)
tids = [t for (t, _) in trains_iter]
assert tids != []
def test_read_fxe_raw_run(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
assert len(run.files) == 18 # 16 LPD 1M + 2 control data files
assert run.train_ids == list(range(10000, 10480))
run.info() # Smoke test
def test_read_fxe_raw_run_selective(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run, include='*DA*')
assert run.train_ids == list(range(10000, 10480))
assert 'SA1_XTD2_XGM/DOOCS/MAIN' in run.control_sources
assert 'FXE_DET_LPD1M-1/DET/0CH0:xtdf' not in run.detector_sources
run = RunDirectory(mock_fxe_raw_run, include='*LPD*')
assert run.train_ids == list(range(10000, 10480))
assert 'SA1_XTD2_XGM/DOOCS/MAIN' not in run.control_sources
assert 'FXE_DET_LPD1M-1/DET/0CH0:xtdf' in run.detector_sources
run = RunDirectory(mock_fxe_raw_run, file_filter=lambda x: [f for f in x if "LPD" in f])
assert run.train_ids == list(range(10000, 10480))
assert 'SA1_XTD2_XGM/DOOCS/MAIN' not in run.control_sources
assert 'FXE_DET_LPD1M-1/DET/0CH0:xtdf' in run.detector_sources
def test_read_spb_proc_run(mock_spb_proc_run):
run = RunDirectory(mock_spb_proc_run) #Test for calib data
assert len(run.files) == 16 # only 16 detector modules for calib data
assert run.train_ids == list(range(10000, 10064)) #64 trains
tid, data = next(run.trains())
device = 'SPB_DET_AGIPD1M-1/DET/15CH0:xtdf'
assert tid == 10000
for prop in ('image.gain', 'image.mask', 'image.data'):
assert prop in data[device]
assert 'u1' == data[device]['image.gain'].dtype
assert 'u4' == data[device]['image.mask'].dtype
assert 'f4' == data[device]['image.data'].dtype
run.info() # Smoke test
run.plot_missing_data() # Smoke test
def test_iterate_spb_raw_run(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
trains_iter = run.trains()
tid, data = next(trains_iter)
assert tid == 10000
device = 'SPB_IRU_CAM/CAM/SIDEMIC:daqOutput'
assert device in data
assert data[device]['data.image.pixels'].shape == (1024, 768)
def test_iterate_spb_raw_run_keep_dims(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
trains_iter = run.select(
'SPB_IRU_CAM/CAM/SIDEMIC:daqOutput',
'data.image.pixels').trains(keep_dims=True)
_, data = next(trains_iter)
assert data[
'SPB_IRU_CAM/CAM/SIDEMIC:daqOutput']['data.image.pixels'
].shape == (1, 1024, 768)
def test_properties_fxe_raw_run(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
assert run.train_ids == list(range(10000, 10480))
assert 'SPB_XTD9_XGM/DOOCS/MAIN' in run.control_sources
assert 'FXE_DET_LPD1M-1/DET/15CH0:xtdf' in run.instrument_sources
def test_iterate_fxe_run(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
trains_iter = run.trains()
tid, data = next(trains_iter)
assert tid == 10000
assert 'FXE_DET_LPD1M-1/DET/15CH0:xtdf' in data
assert 'image.data' in data['FXE_DET_LPD1M-1/DET/15CH0:xtdf']
assert 'FXE_XAD_GEC/CAM/CAMERA' in data
assert 'firmwareVersion.value' in data['FXE_XAD_GEC/CAM/CAMERA']
def test_iterate_select_trains(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
tids = [tid for (tid, _) in run.trains(train_range=by_id[10004:10006])]
assert tids == [10004, 10005]
tids = [tid for (tid, _) in run.trains(train_range=by_id[:10003])]
assert tids == [10000, 10001, 10002]
# Overlap with start of run
tids = [tid for (tid, _) in run.trains(train_range=by_id[9000:10003])]
assert tids == [10000, 10001, 10002]
# Overlap with end of run
tids = [tid for (tid, _) in run.trains(train_range=by_id[10478:10500])]
assert tids == [10478, 10479]
# Not overlapping
with catch_warnings(record=True) as w:
tids = [tid for (tid, _) in run.trains(train_range=by_id[9000:9050])]
assert tids == []
assert 'before' in str(w[0].message)
with catch_warnings(record=True) as w:
tids = [tid for (tid, _) in run.trains(train_range=by_id[10500:10550])]
assert tids == []
assert 'after' in str(w[0].message)
tids = [tid for (tid, _) in run.trains(train_range=by_index[4:6])]
assert tids == [10004, 10005]
def test_iterate_run_glob_devices(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
trains_iter = run.trains([("*/DET/*", "image.data")])
tid, data = next(trains_iter)
assert tid == 10000
assert 'FXE_DET_LPD1M-1/DET/15CH0:xtdf' in data
assert 'image.data' in data['FXE_DET_LPD1M-1/DET/15CH0:xtdf']
assert 'detector.data' not in data['FXE_DET_LPD1M-1/DET/15CH0:xtdf']
assert 'FXE_XAD_GEC/CAM/CAMERA' not in data
def test_train_by_id(mock_fxe_raw_run, mock_control_data_with_empty_source):
# full run
run = RunDirectory(mock_fxe_raw_run)
_, data = run.train_from_id(10024)
assert 'FXE_DET_LPD1M-1/DET/15CH0:xtdf' in data
assert 'image.data' in data['FXE_DET_LPD1M-1/DET/15CH0:xtdf']
assert 'FXE_XAD_GEC/CAM/CAMERA' in data
assert 'firmwareVersion.value' in data['FXE_XAD_GEC/CAM/CAMERA']
# selection
run = RunDirectory(mock_fxe_raw_run)
_, data = run.train_from_id(10024, [('*/DET/*', 'image.data')])
assert 'FXE_DET_LPD1M-1/DET/15CH0:xtdf' in data
assert 'image.data' in data['FXE_DET_LPD1M-1/DET/15CH0:xtdf']
assert 'FXE_XAD_GEC/CAM/CAMERA' not in data
# missing control data
with H5File(mock_control_data_with_empty_source) as f:
_, data = f.train_from_id(10000)
assert 'SA3_XTD10_VAC/GAUGE/G30520C' in data
assert ['metadata'] == list(data['SA3_XTD10_VAC/GAUGE/G30520C'].keys())
def test_train_from_index_fxe_run(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
_, data = run.train_from_index(479)
assert 'FXE_DET_LPD1M-1/DET/15CH0:xtdf' in data
assert 'image.data' in data['FXE_DET_LPD1M-1/DET/15CH0:xtdf']
assert 'FXE_XAD_GEC/CAM/CAMERA' in data
assert 'firmwareVersion.value' in data['FXE_XAD_GEC/CAM/CAMERA']
def test_file_get_series_control(mock_fxe_control_data):
with H5File(mock_fxe_control_data) as f:
s = f.get_series('SA1_XTD2_XGM/DOOCS/MAIN', "beamPosition.iyPos.value")
assert isinstance(s, pd.Series)
assert len(s) == 400
assert s.index[0] == 10000
def test_file_get_series_instrument(mock_spb_proc_run):
agipd_file = os.path.join(mock_spb_proc_run, 'CORR-R0238-AGIPD07-S00000.h5')
with H5File(agipd_file) as f:
s = f.get_series('SPB_DET_AGIPD1M-1/DET/7CH0:xtdf', 'header.linkId')
assert isinstance(s, pd.Series)
assert len(s) == 64
assert s.index[0] == 10000
# Multiple readings per train
s2 = f.get_series('SPB_DET_AGIPD1M-1/DET/7CH0:xtdf', 'image.pulseId')
assert isinstance(s2, pd.Series)
assert not s2.index.is_unique
assert len(s2) == 64 * 64
assert len(s2.loc[10000:10004]) == 5 * 64
sel = f.select_trains(by_index[5:10])
s3 = sel.get_series('SPB_DET_AGIPD1M-1/DET/7CH0:xtdf', 'image.pulseId')
assert isinstance(s3, pd.Series)
assert not s3.index.is_unique
assert len(s3) == 5 * 64
np.testing.assert_array_equal(
s3.index.values, np.arange(10005, 10010).repeat(64)
)
def test_run_get_series_control(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
s = run.get_series('SA1_XTD2_XGM/DOOCS/MAIN', "beamPosition.iyPos.value")
assert isinstance(s, pd.Series)
assert len(s) == 480
assert list(s.index) == list(range(10000, 10480))
def test_run_get_series_select_trains(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
sel = run.select_trains(by_id[10100:10150])
s = sel.get_series('SA1_XTD2_XGM/DOOCS/MAIN', "beamPosition.iyPos.value")
assert isinstance(s, pd.Series)
assert len(s) == 50
assert list(s.index) == list(range(10100, 10150))
def test_run_get_dataframe(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
df = run.get_dataframe(fields=[("*_XGM/*", "*.i[xy]Pos*")])
assert len(df.columns) == 4
assert "SA1_XTD2_XGM/DOOCS/MAIN/beamPosition.ixPos" in df.columns
df2 = run.get_dataframe(fields=[("*_XGM/*", "*.i[xy]Pos*")], timestamps=True)
assert len(df2.columns) == 8
assert "SA1_XTD2_XGM/DOOCS/MAIN/beamPosition.ixPos" in df2.columns
assert "SA1_XTD2_XGM/DOOCS/MAIN/beamPosition.ixPos.timestamp" in df2.columns
def test_file_get_array(mock_fxe_control_data):
with H5File(mock_fxe_control_data) as f:
arr = f.get_array('FXE_XAD_GEC/CAM/CAMERA:daqOutput', 'data.image.pixels')
assert isinstance(arr, DataArray)
assert arr.dims == ('trainId', 'dim_0', 'dim_1')
assert arr.shape == (400, 255, 1024)
assert arr.coords['trainId'][0] == 10000
def test_file_get_array_missing_trains(mock_sa3_control_data):
with H5File(mock_sa3_control_data) as f:
sel = f.select_trains(by_index[:6])
arr = sel.get_array(
'SA3_XTD10_IMGFEL/CAM/BEAMVIEW2:daqOutput', 'data.image.dims'
)
assert isinstance(arr, DataArray)
assert arr.dims == ('trainId', 'dim_0')
assert arr.shape == (3, 2)
np.testing.assert_array_less(arr.coords['trainId'], 10006)
np.testing.assert_array_less(10000, arr.coords['trainId'])
def test_file_get_array_control_roi(mock_sa3_control_data):
with H5File(mock_sa3_control_data) as f:
sel = f.select_trains(by_index[:6])
arr = sel.get_array(
'SA3_XTD10_VAC/DCTRL/D6_APERT_IN_OK',
'interlock.a1.AActCommand.value',
roi=by_index[:25],
)
assert isinstance(arr, DataArray)
assert arr.shape == (6, 25)
assert arr.coords['trainId'][0] == 10000
@pytest.mark.parametrize('name_in, name_out', [
(None, 'SA1_XTD2_XGM/DOOCS/MAIN:output.data.intensityTD'),
('SA1_XGM', 'SA1_XGM')
], ids=['defaultName', 'explicitName'])
def test_run_get_array(mock_fxe_raw_run, name_in, name_out):
run = RunDirectory(mock_fxe_raw_run)
arr = run.get_array(
'SA1_XTD2_XGM/DOOCS/MAIN:output', 'data.intensityTD',
extra_dims=['pulse'], name=name_in
)
assert isinstance(arr, DataArray)
assert arr.dims == ('trainId', 'pulse')
assert arr.shape == (480, 1000)
assert arr.coords['trainId'][0] == 10000
assert arr.name == name_out
def test_run_get_array_empty(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
arr = run.get_array('FXE_XAD_GEC/CAM/CAMERA_NODATA:daqOutput', 'data.image.pixels')
assert isinstance(arr, DataArray)
assert arr.dims[0] == 'trainId'
assert arr.shape == (0, 255, 1024)
def test_run_get_array_error(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
with pytest.raises(SourceNameError):
run.get_array('bad_name', 'data.intensityTD')
with pytest.raises(PropertyNameError):
run.get_array('SA1_XTD2_XGM/DOOCS/MAIN:output', 'bad_name')
def test_run_get_array_select_trains(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
sel = run.select_trains(by_id[10100:10150])
arr = sel.get_array(
'SA1_XTD2_XGM/DOOCS/MAIN:output', 'data.intensityTD', extra_dims=['pulse']
)
assert isinstance(arr, DataArray)
assert arr.dims == ('trainId', 'pulse')
assert arr.shape == (50, 1000)
assert arr.coords['trainId'][0] == 10100
def test_run_get_array_roi(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
arr = run.get_array('SA1_XTD2_XGM/DOOCS/MAIN:output', 'data.intensityTD',
extra_dims=['pulse'], roi=by_index[:16])
assert isinstance(arr, DataArray)
assert arr.dims == ('trainId', 'pulse')
assert arr.shape == (480, 16)
assert arr.coords['trainId'][0] == 10000
def test_run_get_array_multiple_per_train(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
sel = run.select_trains(np.s_[:2])
arr = sel.get_array(
'FXE_DET_LPD1M-1/DET/6CH0:xtdf', 'image.data', roi=np.s_[:, 10:20, 20:40]
)
assert isinstance(arr, DataArray)
assert arr.shape == (256, 1, 10, 20)
np.testing.assert_array_equal(arr.coords['trainId'], np.repeat([10000, 10001], 128))
def test_run_get_virtual_dataset(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
ds = run.get_virtual_dataset('FXE_DET_LPD1M-1/DET/6CH0:xtdf', 'image.data')
assert isinstance(ds, h5py.Dataset)
assert ds.is_virtual
assert ds.shape == (61440, 1, 256, 256)
# Across two sequence files
ds = run.get_virtual_dataset(
'FXE_XAD_GEC/CAM/CAMERA:daqOutput', 'data.image.pixels'
)
assert isinstance(ds, h5py.Dataset)
assert ds.is_virtual
assert ds.shape == (480, 255, 1024)
def test_run_get_virtual_dataset_filename(mock_fxe_raw_run, tmpdir):
run = RunDirectory(mock_fxe_raw_run)
path = str(tmpdir / 'test-vds.h5')
ds = run.get_virtual_dataset(
'FXE_DET_LPD1M-1/DET/6CH0:xtdf', 'image.data', filename=path
)
assert_isfile(path)
assert ds.file.filename == path
assert isinstance(ds, h5py.Dataset)
assert ds.is_virtual
assert ds.shape == (61440, 1, 256, 256)
def test_run_get_dask_array(mock_fxe_raw_run):
import dask.array as da
run = RunDirectory(mock_fxe_raw_run)
arr = run.get_dask_array(
'SA1_XTD2_XGM/DOOCS/MAIN:output', 'data.intensityTD',
)
assert isinstance(arr, da.Array)
assert arr.shape == (480, 1000)
assert arr.dtype == np.float32
def test_run_get_dask_array_labelled(mock_fxe_raw_run):
import dask.array as da
run = RunDirectory(mock_fxe_raw_run)
arr = run.get_dask_array(
'SA1_XTD2_XGM/DOOCS/MAIN:output', 'data.intensityTD', labelled=True
)
assert isinstance(arr, DataArray)
assert isinstance(arr.data, da.Array)
assert arr.dims == ('trainId', 'dim_0')
assert arr.shape == (480, 1000)
assert arr.coords['trainId'][0] == 10000
def test_select(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
assert 'SPB_XTD9_XGM/DOOCS/MAIN' in run.control_sources
# Basic selection machinery, glob API
sel = run.select('*/DET/*', 'image.pulseId')
assert 'SPB_XTD9_XGM/DOOCS/MAIN' not in sel.control_sources
assert 'FXE_DET_LPD1M-1/DET/0CH0:xtdf' in sel.instrument_sources
_, data = sel.train_from_id(10000)
for source, source_data in data.items():
assert set(source_data.keys()) == {'image.pulseId', 'metadata'}
sel_by_list = run.select([
('*/DET/*', 'image.pulseId'),
'FXE_XAD_GEC/CAM/*',
])
assert 'SPB_XTD9_XGM/DOOCS/MAIN' not in sel_by_list.control_sources
assert 'FXE_DET_LPD1M-1/DET/0CH0:xtdf' in sel_by_list.instrument_sources
assert sel_by_list['FXE_DET_LPD1M-1/DET/0CH0:xtdf'].keys() == {'image.pulseId'}
cam_src = 'FXE_XAD_GEC/CAM/CAMERA_NODATA'
assert cam_src in sel_by_list.control_sources
assert f'{cam_src}:daqOutput' in sel_by_list.instrument_sources
assert sel_by_list[cam_src].keys() == run[cam_src].keys()
assert sel_by_list[f'{cam_src}:daqOutput'].keys() == run[f'{cam_src}:daqOutput'].keys()
# Basic selection machinery, dict-based API
sel_by_dict = run.select({
'SA1_XTD2_XGM/DOOCS/MAIN': None,
'FXE_DET_LPD1M-1/DET/0CH0:xtdf': {'image.pulseId'}
})
assert sel_by_dict.control_sources == {'SA1_XTD2_XGM/DOOCS/MAIN'}
assert sel_by_dict.instrument_sources == {'FXE_DET_LPD1M-1/DET/0CH0:xtdf'}
assert sel_by_dict.keys_for_source('FXE_DET_LPD1M-1/DET/0CH0:xtdf') == \
sel.keys_for_source('FXE_DET_LPD1M-1/DET/0CH0:xtdf')
# Re-select using * selection, should yield the same keys.
assert sel.keys_for_source('FXE_DET_LPD1M-1/DET/0CH0:xtdf') == \
sel.select('FXE_DET_LPD1M-1/DET/0CH0:xtdf', '*') \
.keys_for_source('FXE_DET_LPD1M-1/DET/0CH0:xtdf')
assert sel.keys_for_source('FXE_DET_LPD1M-1/DET/0CH0:xtdf') == \
sel.select({'FXE_DET_LPD1M-1/DET/0CH0:xtdf': {}}) \
.keys_for_source('FXE_DET_LPD1M-1/DET/0CH0:xtdf')
# Re-select a different but originally valid key, should fail.
with pytest.raises(ValueError):
# ValueError due to globbing.
sel.select('FXE_DET_LPD1M-1/DET/0CH0:xtdf', 'image.trainId')
with pytest.raises(PropertyNameError):
# PropertyNameError via explicit key.
sel.select({'FXE_DET_LPD1M-1/DET/0CH0:xtdf': {'image.trainId'}})
# Select by another DataCollection.
sel_by_dc = run.select(sel)
assert sel_by_dc.control_sources == sel.control_sources
assert sel_by_dc.instrument_sources == sel.instrument_sources
assert sel_by_dc.train_ids == sel.train_ids
# Select by SourceData.
sd = run['SPB_XTD9_XGM/DOOCS/MAIN'].select_keys('beamPosition.*')
sel_by_sd = run.select(sd)
assert sel_by_sd.control_sources == {sd.source}
assert sel_by_sd.keys_for_source(sd.source) == sd.keys()
# Select by KeyData.
kd = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos']
sel_by_kd = run.select(kd)
assert sel_by_kd.control_sources == {kd.source}
assert sel_by_kd.keys_for_source(kd.source) == {kd.key}
# disallow mixing source and train ID selection
with pytest.raises(TypeError):
run['SPB_XTD9_XGM/DOOCS/MAIN', 10]
@pytest.mark.parametrize(
'select_str',
['*/BEAMVIEW2:daqOutput', '*/BEAMVIEW2*', '*', [('*/BEAMVIEW2:*', 'data.image.*')]]
)
def test_select_require_all(mock_sa3_control_data, select_str):
# De-select two sources in this example set which have no trains
# at all as well as one other with partuial trains, to allow
# matching trains across all sources with the same result.
run = H5File(mock_sa3_control_data) \
.deselect([('SA3_XTD10_MCP/ADC/1:*', '*'),
('SA3_XTD10_IMGFEL/CAM/BEAMVIEW:*', '*'),
('SA3_XTD10_IMGFEL/CAM/BEAMVIEW3:*', '*')])
subrun = run.select(select_str, require_all=True)
np.testing.assert_array_equal(subrun.train_ids, run.train_ids[1::2])
# The train IDs are held by ndarrays during this operation, make
# sure it's a list of np.uint64 again.
assert isinstance(subrun.train_ids, list)
assert all([isinstance(x, np.uint64) for x in subrun.train_ids])
def test_select_require_all_empty(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
with pytest.warns(match=r"(\d+)/\1 \(100%\) trains dropped"):
sel = run.select([
"*_XGM/DOOCS/MAIN:output",
"FXE_XAD_GEC/CAM/CAMERA_NODATA:daqOutput"
], require_all=True)
assert sel.train_ids == []
def test_select_require_any(mock_sa3_control_data):
run = H5File(mock_sa3_control_data)
# BEAMVIEW2 has 250/500 trains, BEAMVIEW3 has 200/500 trains.
# Compare the train IDs resulting from a require-any select with the
# union of their respective train IDs.
np.testing.assert_array_equal(
run.select('*/BEAMVIEW*:daqOutput', require_any=True).train_ids,
np.union1d(
run.select('*/BEAMVIEW2:daqOutput', require_all=True).train_ids,
run.select('*/BEAMVIEW3:daqOutput', require_all=True).train_ids
))
# BEAMVIEW has no trains, should also yield an empty list.
assert run.select('*/BEAMVIEW:daqOutput', require_any=True).train_ids == []
def test_deselect(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
xtd9_xgm = 'SPB_XTD9_XGM/DOOCS/MAIN'
assert xtd9_xgm in run.control_sources
sel = run.deselect('*_XGM/DOOCS*')
assert xtd9_xgm not in sel.control_sources
assert 'FXE_DET_LPD1M-1/DET/0CH0:xtdf' in sel.instrument_sources
sel = run.deselect('*_XGM/DOOCS*', '*.ixPos')
assert xtd9_xgm in sel.control_sources
assert 'beamPosition.ixPos.value' not in sel.selection[xtd9_xgm]
assert 'beamPosition.iyPos.value' in sel.selection[xtd9_xgm]
sel = run.deselect(run.select('*_XGM/DOOCS*'))
assert xtd9_xgm not in sel.control_sources
assert 'FXE_DET_LPD1M-1/DET/0CH0:xtdf' in sel.instrument_sources
def test_select_trains(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
assert len(run.train_ids) == 480
sel = run.select_trains(by_id[10200:10220])
assert sel.train_ids == list(range(10200, 10220))
sel = run.select_trains(by_index[:10])
assert sel.train_ids == list(range(10000, 10010))
with catch_warnings(record=True) as w:
sel = run.select_trains(by_id[9000:9100]) # Before data
assert sel.train_ids == []
assert len(w) == 1
assert "before" in str(w[0].message)
with catch_warnings(record=True) as w:
sel = run.select_trains(by_id[12000:12500]) # After data
assert sel.train_ids == []
assert len(w) == 1
assert "after" in str(w[0].message)
# Select a list of train IDs
sel = run.select_trains(by_id[[9950, 10000, 10101, 10500]])
assert sel.train_ids == [10000, 10101]
with catch_warnings(record=True) as w:
sel = run.select_trains(by_id[[9900, 10600]])
assert sel.train_ids == []
assert len(w) == 1
assert "not found" in str(w[0].message)
# Select a list of indexes
sel = run.select_trains(by_index[[5, 25]])
assert sel.train_ids == [10005, 10025]
with pytest.raises(IndexError):
run.select_trains(by_index[[480]])
assert run[10].train_ids == [10010]
assert run[by_id[10000]].train_ids == [10000]
assert run[by_index[479:555]].train_ids == [10479]
with pytest.raises(IndexError):
run[555]
def test_split_trains(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
assert len(run.train_ids) == 480
chunks = list(run.split_trains(3))
assert len(chunks) == 3
assert {len(c.train_ids) for c in chunks} == {160}
arr = chunks[0]['FXE_XAD_GEC/CAM/CAMERA:daqOutput', 'data.image.dims'].ndarray()
assert arr.shape == (160, 2)
chunks = list(run.split_trains(4, trains_per_part=100))
assert len(chunks) == 5
assert {len(c.train_ids) for c in chunks} == {96}
def test_train_timestamps(mock_scs_run):
run = RunDirectory(mock_scs_run)
tss = run.train_timestamps(labelled=False)
assert isinstance(tss, np.ndarray)
assert tss.shape == (len(run.train_ids),)
assert tss.dtype == np.dtype('datetime64[ns]')
assert np.all(np.diff(tss).astype(np.uint64) > 0)
# Convert numpy datetime64[ns] to Python datetime (dropping some precision)
tss_l = run.train_timestamps(pydatetime=True)
assert len(tss_l) == len(run.train_ids)
now = datetime.now(timezone.utc)
assert tss_l[0] > (now - timedelta(days=1)) # assuming tests take < 1 day to run
assert tss_l[0] < now
assert tss_l[0].tzinfo is timezone.utc
tss_ser = run.train_timestamps(labelled=True)
assert isinstance(tss_ser, pd.Series)
np.testing.assert_array_equal(tss_ser.values, tss)
np.testing.assert_array_equal(tss_ser.index, run.train_ids)
assert tss_ser.dt.tz is timezone.utc
def test_train_timestamps_local_time(mock_scs_run):
run = RunDirectory(mock_scs_run)
del1h = timedelta(hours=1)
del2h = timedelta(hours=2)
# First, the pydatetime case
tss_berlin = run.train_timestamps(pydatetime=True, euxfel_local_time=True)
# The time difference between UTC and Europe/Berlin can only be
# one or two hours depending on daylight savings
assert all(
t1.utcoffset() == del1h or t1.utcoffset() == del2h
for t1 in tss_berlin
)
# Second, the pandas (labelled=True) case
tss = run.train_timestamps(labelled=True)
tss_berlin = run.train_timestamps(labelled=True, euxfel_local_time=True)
dtss = tss_berlin.dt.tz_localize(None) - tss.dt.tz_localize(None)
assert all(dtss == del1h) or all(dtss == del2h)
# Finally, check that ValueError is raised if euxfel_local_time is used
# on its own
with pytest.raises(ValueError):
run.train_timestamps(pydatetime=False, labelled=False, euxfel_local_time=True)
def test_train_timestamps_nat(mock_fxe_control_data):
f = H5File(mock_fxe_control_data)
tss = f.train_timestamps()
assert tss.shape == (len(f.train_ids),)
if f.files[0].format_version == '0.5':
assert np.all(np.isnat(tss))
else:
assert not np.any(np.isnat(tss))
tss_l = f.train_timestamps(pydatetime=True)
assert len(tss_l) == len(f.train_ids)
if f.files[0].format_version == '0.5':
assert all(t is None for t in tss_l)
else:
assert not any(t is None for t in tss_l)
def test_union(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
xgm = "SPB_XTD9_XGM/DOOCS/MAIN"
camera = "FXE_XAD_GEC/CAM/CAMERA"
# Test union of different sources
sel1 = run.select(xgm, 'beamPosition.ixPos')
sel2 = run.select(xgm, 'beamPosition.iyPos')
joined = sel1.union(sel2)
assert joined.control_sources == { xgm }
assert joined.selection == {
xgm: {
'beamPosition.ixPos.value',
'beamPosition.iyPos.value',
}
}
# Test union of different train selections
sel1 = run.select_trains(by_id[10200:10220])
sel2 = run.select_trains(by_index[:10])
joined = sel1.union(sel2)
assert joined.train_ids == list(range(10000, 10010)) + list(range(10200, 10220))
# Test union of different sources in different train selections
sel1 = run.select(xgm).select_trains(by_index[:5])
sel2 = run.select(camera).select_trains(by_index[-5:])
joined = sel1.union(sel2)
expected_tids = run.train_ids[:5] + run.train_ids[-5:]
assert joined.train_ids == expected_tids
assert joined[xgm].train_ids == expected_tids
assert joined[camera].train_ids == expected_tids
# Try via operators.
sel1 = run.select(xgm, 'beamPosition.ixPos')
sel2 = run.select(xgm, 'beamPosition.iyPos')
joined = sel1 | sel2
assert joined.selection == {
xgm: {
'beamPosition.ixPos.value',
'beamPosition.iyPos.value',
}
}
sel1 |= sel2
assert sel1.selection == {
xgm: {
'beamPosition.ixPos.value',
'beamPosition.iyPos.value',
}
}
def test_union_raw_proc(mock_spb_raw_run, mock_spb_proc_run):
raw_run = RunDirectory(mock_spb_raw_run)
proc_run = RunDirectory(mock_spb_proc_run)
run = raw_run.deselect('*AGIPD1M*').union(proc_run)
assert run.all_sources == (raw_run.all_sources | proc_run.all_sources)
if raw_run.run_metadata()['dataFormatVersion'] != '0.5':
assert run.is_single_run
def test_union_multiple_runs(mock_spb_raw_run, mock_jungfrau_run, mock_scs_run):
run_spb = RunDirectory(mock_spb_raw_run)
run_jf = RunDirectory(mock_jungfrau_run)
run_scs = RunDirectory(mock_scs_run)
assert run_spb.is_single_run
assert run_jf.is_single_run
assert run_scs.is_single_run
# Union in one go
u1 = run_spb.union(run_jf, run_scs)
assert u1.all_sources == (run_spb.all_sources | run_jf.all_sources | run_scs.all_sources)
assert not u1.is_single_run
# Union in two steps
u2 = run_scs.union(run_jf).union(run_spb)
assert u2.all_sources == u1.all_sources
assert not u1.is_single_run
def test_read_skip_invalid(mock_lpd_data, empty_h5_file, capsys):
d = DataCollection.from_paths([mock_lpd_data, empty_h5_file])
assert d.instrument_sources == {'FXE_DET_LPD1M-1/DET/0CH0:xtdf'}
out, err = capsys.readouterr()
assert "Skipping file" in err
def test_run_immutable_sources(mock_fxe_raw_run):
test_run = RunDirectory(mock_fxe_raw_run)
before = len(test_run.all_sources)
with pytest.raises(AttributeError):
test_run.all_sources.pop()
assert len(test_run.all_sources) == before
def test_open_file(mock_sa3_control_data):
f = H5File(mock_sa3_control_data)
file_access = f.files[0]
assert file_access.format_version in ('0.5', '1.0', '1.2')
assert 'SA3_XTD10_VAC/TSENS/S30180K' in f.control_sources
if file_access.format_version == '0.5':
assert 'METADATA/dataSourceId' in file_access.file
else:
assert 'METADATA/dataSources/dataSourceId' in file_access.file
@pytest.mark.skipif(hasattr(os, 'geteuid') and os.geteuid() == 0,
reason="cannot run permission tests as root")
def test_permission():
d = mkdtemp()
os.chmod(d, not stat.S_IRUSR)
with pytest.raises(PermissionError) as excinfo:
run = RunDirectory(d)
assert "Permission denied" in str(excinfo.value)
assert d in str(excinfo.value)
def test_empty_file_info(mock_empty_file, capsys):
f = H5File(mock_empty_file)
f.info() # smoke test
def test_get_data_counts(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
count = run.get_data_counts('SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value')
assert count.index.tolist() == run.train_ids
assert (count.values == 1).all()
def test_get_run_value(mock_fxe_control_data):
f = H5File(mock_fxe_control_data)
src = 'FXE_XAD_GEC/CAM/CAMERA'
val = f.get_run_value(src, 'firmwareVersion')
assert isinstance(val, np.int32)
assert f.get_run_value(src, 'firmwareVersion.value') == val
with pytest.raises(SourceNameError):
f.get_run_value(src + '_NONEXIST', 'firmwareVersion')
with pytest.raises(PropertyNameError):
f.get_run_value(src, 'non.existant')
def test_get_run_value_union_multirun(mock_fxe_control_data, mock_fxe_control_data1):
f = H5File(mock_fxe_control_data)
f2 = H5File(mock_fxe_control_data1)
data = f.union(f2)
with pytest.raises(MultiRunError):
data.run_metadata()
with pytest.raises(MultiRunError):
data.get_run_value('FXE_XAD_GEC/CAM/CAMERA', 'firmwareVersion')
with pytest.raises(MultiRunError):
data.get_run_values('FXE_XAD_GEC/CAM/CAMERA')
def test_get_run_value_union(mock_fxe_control_data, mock_sa3_control_data):
f = H5File(mock_fxe_control_data)
f2 = H5File(mock_sa3_control_data)
data = f.union(f2)
if data.files[0].format_version != '0.5':
assert data.get_run_value(
'FXE_XAD_GEC/CAM/CAMERA', 'firmwareVersion') == 0
assert (
data.run_metadata()["runNumber"] ==
f.run_metadata()["runNumber"] ==
f2.run_metadata()["runNumber"]
)
def test_get_run_values(mock_fxe_control_data):
f = H5File(mock_fxe_control_data)
src = 'FXE_XAD_GEC/CAM/CAMERA'
d = f.get_run_values(src, )
assert isinstance(d['firmwareVersion.value'], np.int32)
assert isinstance(d['enableShutter.value'], np.uint8)
def test_get_run_values_no_trains(mock_jungfrau_run):
run = RunDirectory(mock_jungfrau_run)
sel = run.select_trains(np.s_[:0])
d = sel.get_run_values('SPB_IRDA_JF4M/MDL/POWER')
assert isinstance(d['voltage.value'], np.float64)
def test_inspect_key_no_trains(mock_jungfrau_run):
run = RunDirectory(mock_jungfrau_run)
sel = run.select_trains(np.s_[:0])
# CONTROL
jf_pwr_voltage = sel['SPB_IRDA_JF4M/MDL/POWER', 'voltage']
assert jf_pwr_voltage.shape == (0,)
assert jf_pwr_voltage.dtype == np.dtype(np.float64)
# INSTRUMENT
jf_m1_data = sel['SPB_IRDA_JF4M/DET/JNGFR01:daqOutput', 'data.adc']
assert jf_m1_data.shape == (0, 16, 512, 1024)
assert jf_m1_data.dtype == np.dtype(np.float32)
def test_run_metadata(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
md = run.run_metadata()
if run.files[0].format_version == '0.5':
assert md == {'dataFormatVersion': '0.5'}
else:
assert md['dataFormatVersion'] in ('1.0', '1.2')
assert set(md) == {
'dataFormatVersion', 'creationDate', 'updateDate', 'daqLibrary',
'karaboFramework', 'proposalNumber', 'runNumber', 'runType',
'sample', 'sequenceNumber',
}
assert isinstance(md['creationDate'], str)
def test_run_metadata_no_trains(mock_scs_run):
run = RunDirectory(mock_scs_run)
sel = run.select_trains(np.s_[:0])
md = sel.run_metadata()
assert md['dataFormatVersion'] == '1.0'
def test_proc_legacy_sources(mock_modern_spb_proc_run):
run = RunDirectory(mock_modern_spb_proc_run)
src_pattern = 'SPB_DET_AGIPD1M-1/{}/{}CH0:{}'
corr_sources = {src_pattern.format('CORR', i, 'output') for i in range(16)}
det_sources = {src_pattern.format('DET', i, 'xtdf') for i in range(16)}
# Should contain both canonical and legacy names.
assert run.all_sources == corr_sources | det_sources
assert run.instrument_sources == corr_sources | det_sources
assert not run.control_sources
# Should only contain canonical names.
assert run.detector_sources == corr_sources
# Should map legacy to canonical names.
assert run.legacy_sources == dict(zip(
sorted(det_sources), sorted(corr_sources)))
det_mod0 = src_pattern.format('DET', 0, 'xtdf')
# Classic APIs continue to work as normal, but raise warnings
# whenever data is accessed through creation of SourceData object.
with pytest.warns(DeprecationWarning):
assert 'image.data' in run.keys_for_source(det_mod0)
with pytest.warns(DeprecationWarning):
assert run.get_dtype(det_mod0, 'image.data') == np.float32
assert run.select(det_mod0).all_sources == {det_mod0}
def test_datacollection_contains(mock_fxe_control_data):
run = H5File(mock_fxe_control_data)
assert 'FXE_XAD_GEC/CAM/CAMERA:daqOutput' in run
assert 'MY/LITTLE/PONY' not in run
assert ('MY/LITTLE/PONY', 'actualPosition') not in run
assert ('SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos') in run
assert ('SPB_XTD9/XGM/DOOCS/MAIN', '42') not in run
assert 42 not in run
|