1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
"""Writing CXI files from AGIPD/LPD data"""
import h5py
import logging
import numpy as np
log = logging.getLogger(__name__)
class VirtualCXIWriterBase:
"""
Base class for machinery to write a CXI file containing virtual
datasets.
You don't normally need to use this class directly. Instead,
use the write_virtual_cxi() method on a multi-module detector
data interface object.
CXI specifies a particular layout of data in the HDF5 file format.
It is documented here:
http://www.cxidb.org/cxi.html
This code writes version 1.5 CXI files.
Parameters
----------
detdata: extra_data.components.MultimodDetectorBase
The detector data interface for the data to gather in this file.
"""
# 1 entry is an index along the first (time) dimension in the source files.
# XTDF detectors (AGIPD etc.) arrange pulses along this dimension, so each
# entry is one frame & one memory cell. JUNGFRAU in burst mode makes one
# entry with a separate dimension for several pulses, so overrides this.
cells_per_entry = 1
def __init__(self, detdata):
self.detdata = detdata
self.group_label, self.image_label = detdata._main_data_key.split('.')
frame_counts = detdata.frame_counts * self.cells_per_entry
self.nframes = frame_counts.sum()
log.info("Up to %d frames per train, %d frames in total",
frame_counts.max(), self.nframes)
self.train_ids_perframe = np.repeat(
frame_counts.index.values, frame_counts.values.astype(np.intp)
)
# For AGIPD, DSSC & LPD detectors modules are numbered from 0.
# Overridden for JUNGFRAU to number from 1.
self.modulenos = list(range(self.nmodules))
@property
def nmodules(self):
"""Number of detector modules."""
return self.detdata.n_modules
@property
def data(self):
"""DataCollection with detector data from a run."""
return self.detdata.data
def _get_module_index(self, module):
"""Returns an index for the specified module."""
return self.modulenos.index(module)
def collect_pulse_ids(self):
"""
Gather pulse/cell ID labels for all modules and check consistency.
Raises
------
Exception:
Some data has no pulse ID values for any module.
Exception:
Inconsistent pulse IDs between detector modules.
Returns
-------
pulse_ids_min: np.array
Array of pulse IDs per frame common for all detector modules.
"""
# Gather pulse IDs
NO_PULSE_ID = 9999
pulse_ids = np.full((self.nframes, self.nmodules), NO_PULSE_ID,
dtype=np.uint64)
pulse_key = self.group_label + '.' + self.pulse_id_label
for source, modno in self.detdata.source_to_modno.items():
module_ix = self._get_module_index(modno)
for chunk in self.data._find_data_chunks(source, pulse_key):
chunk_data = chunk.dataset
self._map_chunk(chunk, chunk_data, pulse_ids, module_ix)
# Sanity checks on pulse IDs
pulse_ids_min = pulse_ids.min(axis=1)
if (pulse_ids_min == NO_PULSE_ID).any():
raise Exception("Failed to find pulse IDs for some data")
pulse_ids[pulse_ids == NO_PULSE_ID] = 0
if (pulse_ids_min != pulse_ids.max(axis=1)).any():
raise Exception("Inconsistent pulse IDs for different modules")
# Pulse IDs make sense. Drop the modules dimension, giving one
# pulse ID for each frame.
return pulse_ids_min
def _map_chunk(self, chunk, chunk_data, target, tgt_ax1, have_data=None):
"""
Map data from chunk into target.
Chunk points to contiguous source data, but if this misses a train,
it might not correspond to a contiguous region in the output. So this
may perform multiple mappings.
Parameters
----------
chunk: read_machinery::DataChunk
Reference to a contiguous chunk of data to be mapped.
chunk_data: h5py.Dataset / h5py.VirtualSource
Dataset / VirtualSource to map data from.
target: np.array / h5py.VirtualLayout
Target to map data to.
tgt_ax1: int
Value for the target axis 1 - index corresponding to the detector
module.
have_data: np.array(dtype=bool), optional
An array to monitor which part of the target have been mapped
with data. Defaults to None.
"""
# Expand the list of train IDs to one per frame
for tgt_slice, chunk_slice in self.detdata._split_align_chunk(
chunk, self.detdata.train_ids_perframe
):
tgt_start = tgt_slice.start * self.cells_per_entry
tgt_end = tgt_slice.stop * self.cells_per_entry
if self.cells_per_entry == 1:
# In some cases, there's an extra dimension of length 1.
# E.g. JUNGFRAU data with 1 memory cell per train or
# DSSC/LPD raw data.
if (len(chunk_data.shape) > 1 and chunk_data.shape[1] == 1):
matched = chunk_data[chunk_slice, 0]
else:
matched = chunk_data[chunk_slice]
target[tgt_start:tgt_end, tgt_ax1] = matched
else:
matched = chunk_data[chunk_slice]
if isinstance(chunk_data, h5py.VirtualSource):
# Use broadcasting of h5py.VirtualSource
target[tgt_start:tgt_end, tgt_ax1] = matched
else:
target[tgt_start:tgt_end, tgt_ax1] = matched.reshape(
(-1,) + matched.shape[2:])
# Fill in the map of what data we have
if have_data is not None:
have_data[tgt_start:tgt_end, tgt_ax1] = True
def _map_layouts(self, layouts):
"""
Map virtual sources into virtual layouts.
Parameters
----------
layouts: dict
A dictionary of unmapped virtual layouts.
Returns
-------
layouts: dict
A dictionary of virtual layouts mapped to the virtual sources.
"""
for name, layout in layouts.items():
key = '{}.{}'.format(self.group_label, name)
have_data = np.zeros((self.nframes, self.nmodules), dtype=bool)
for source, modno in self.detdata.source_to_modno.items():
print(f" ### Source: {source}, ModNo: {modno}, Key: {key}")
module_ix = self._get_module_index(modno)
for chunk in self.data._find_data_chunks(source, key):
vsrc = h5py.VirtualSource(chunk.dataset)
self._map_chunk(chunk, vsrc, layout, module_ix, have_data)
filled_pct = 100 * have_data.sum() / have_data.size
if hasattr(layout, 'sources'):
n_mappings = len(layout.sources) # h5py < 3.3
else:
n_mappings = layout.dcpl.get_virtual_count() # h5py >= 3.3
log.info(f"Assembled {n_mappings:d} chunks for {key:s}, "
f"filling {filled_pct:.2f}% of the hyperslab")
return layouts
def write(self, filename, fillvalues=None):
"""
Write the file on disc to filename.
Parameters
----------
filename: str
Path of the file to be written.
fillvalues: dict, optional
Keys are datasets names (one of: data, gain, mask) and associated
fill value for missing data. defaults are:
- data: nan (proc, float32) or 0 (raw, uint16)
- gain: 0 (uint8)
- mask: 0xffffffff (uint32)
"""
pulse_ids = self.collect_pulse_ids()
experiment_ids = np.char.add(np.char.add(
self.train_ids_perframe.astype(str), ':'), pulse_ids.astype(str))
layouts = self.collect_data()
data_label = self.image_label
_fillvalues = {
# Data can be uint16 (raw) or float32 (proc)
data_label: np.nan if layouts[data_label].dtype.kind == 'f' else 0,
'gain': 0,
'mask': 0xffffffff
}
if fillvalues:
_fillvalues.update(fillvalues)
# Enforce that fill values are compatible with array dtype
_fillvalues[data_label] = layouts[data_label].dtype.type(
_fillvalues[data_label])
if 'gain' in layouts:
_fillvalues['gain'] = layouts['gain'].dtype.type(
_fillvalues['gain'])
if 'mask' in layouts:
_fillvalues['mask'] = layouts['mask'].dtype.type(
_fillvalues['mask'])
log.info("Writing to %s", filename)
# Virtual datasets require HDF5 >= 1.10.
# Specifying this up front should mean it fails before touching
# the file if run on an older version. We also specify this as
# the maximum version, to ensure we're creating files that can
# be read by HDF5 1.10.
with h5py.File(filename, 'w', libver=('v110', 'v110')) as f:
f.create_dataset('cxi_version', data=[150])
d = f.create_dataset('entry_1/experiment_identifier',
shape=experiment_ids.shape,
dtype=h5py.special_dtype(vlen=str))
d[:] = experiment_ids
# pulseId, trainId, cellId are not part of the CXI standard,
# but it allows extra data.
f.create_dataset(f'entry_1/{self.pulse_id_label}', data=pulse_ids)
f.create_dataset('entry_1/trainId', data=self.train_ids_perframe)
cellids = f.create_virtual_dataset('entry_1/cellId',
layouts[self.cell_id_label])
cellids.attrs['axes'] = 'experiment_identifier:module_identifier'
dgrp = f.create_group('entry_1/instrument_1/detector_1')
if len(layouts[data_label].shape) == 4:
axes_s = 'experiment_identifier:module_identifier:y:x'
else:
# 5D dataset, with extra axis for
axes_s = 'experiment_identifier:module_identifier:data_gain:y:x'
ndg = layouts[data_label].shape[2]
d = f.create_dataset('entry_1/data_gain', shape=(ndg,),
dtype=h5py.special_dtype(vlen=str))
d[:] = ([data_label, 'gain'] if ndg == 2 else [data_label])
dgrp['data_gain'] = h5py.SoftLink('/entry_1/data_gain')
data = dgrp.create_virtual_dataset(
'data', layouts[data_label], fillvalue=_fillvalues[data_label]
)
data.attrs['axes'] = axes_s
if 'gain' in layouts:
gain = dgrp.create_virtual_dataset(
'gain', layouts['gain'], fillvalue=_fillvalues['gain']
)
gain.attrs['axes'] = axes_s
if 'mask' in layouts:
mask = dgrp.create_virtual_dataset(
'mask', layouts['mask'], fillvalue=_fillvalues['mask']
)
mask.attrs['axes'] = axes_s
dgrp['experiment_identifier'] = h5py.SoftLink(
'/entry_1/experiment_identifier')
f['entry_1/data_1'] = h5py.SoftLink(
'/entry_1/instrument_1/detector_1')
dgrp.create_dataset('module_identifier', data=self.modulenos)
log.info("Finished writing virtual CXI file")
class XtdfCXIWriter(VirtualCXIWriterBase):
"""
Machinery to write VDS files for a group of detectors with similar
data format - AGIPD, DSSC & LPD.
You don't normally need to use this class directly. Instead,
use the write_virtual_cxi() method on a multi-module detector
data interface object.
CXI specifies a particular layout of data in the HDF5 file format.
It is documented here:
http://www.cxidb.org/cxi.html
This code writes version 1.5 CXI files.
Parameters
----------
detdata: extra_data.components.XtdfDetectorBase
The detector data interface for the data to gather in this file.
"""
def __init__(self, detdata) -> None:
self.cells_per_entry = 1
self.pulse_id_label = 'pulseId'
self.cell_id_label = 'cellId'
super().__init__(detdata)
def collect_data(self):
"""
Prepare virtual layouts and map them to the virtual sources in
the data chunks.
Returns
-------
layouts: dict
A dictionary mapping virtual datasets names (e.g. ``data``)
to h5py virtual layouts.
"""
src = next(iter(self.detdata.source_to_modno))
h5file = self.data[src].files[0].file
image_grp = h5file['INSTRUMENT'][src][self.group_label]
VLayout = h5py.VirtualLayout
det_name = type(self.detdata).__name__
if 'gain' in image_grp:
log.info(f"Identified {det_name} calibrated data")
shape = (self.nframes, self.nmodules) + self.detdata.module_shape
log.info("Virtual data shape: %r", shape)
layouts = {
self.image_label: VLayout(
shape, dtype=image_grp[self.image_label].dtype),
'gain': VLayout(shape, dtype=image_grp['gain'].dtype),
}
if 'mask' in image_grp:
layouts['mask'] = VLayout(shape, dtype=image_grp['mask'].dtype)
else:
log.info(f"Identified {det_name} raw data")
shape = (self.nframes, self.nmodules) + image_grp['data'].shape[1:]
log.info("Virtual data shape: %r", shape)
layouts = {
self.image_label: VLayout(
shape, dtype=image_grp[self.image_label].dtype),
}
layouts[self.cell_id_label] = VLayout(
(self.nframes, self.nmodules),
dtype=image_grp[self.cell_id_label].dtype
)
return self._map_layouts(layouts)
class JUNGFRAUCXIWriter(VirtualCXIWriterBase):
"""
Machinery to write VDS files for JUNGFRAU data in the same format
as AGIPD/LPD virtual datasets.
You don't normally need to use this class directly. Instead,
use the write_virtual_cxi() method on a multi-module detector
data interface object.
CXI specifies a particular layout of data in the HDF5 file format.
It is documented here:
http://www.cxidb.org/cxi.html
This code writes version 1.5 CXI files.
Parameters
----------
detdata: extra_data.components.JUNGFRAU
The detector data interface for the data to gather in this file.
"""
def __init__(self, detdata) -> None:
# Check number of cells
src = next(iter(detdata.source_to_modno))
keydata = detdata.data[src, 'data.adc']
self.cells_per_entry = keydata.entry_shape[0]
self.pulse_id_label = 'memoryCell'
self.cell_id_label = 'memoryCell'
super().__init__(detdata)
# For JUNGFRAU detectors modules are numbered from 1
self.modulenos = list(range(1, self.nmodules + 1))
def collect_data(self):
"""
Prepare virtual layouts and map them to the virtual sources in
the data chunks.
Returns
-------
layouts: dict
A dictionary mapping virtual datasets names (e.g. ``data``)
to h5py virtual layouts.
"""
src = next(iter(self.detdata.source_to_modno))
h5file = self.data[src].files[0].file
image_grp = h5file['INSTRUMENT'][src][self.group_label]
VLayout = h5py.VirtualLayout
det_name = type(self.detdata).__name__
log.info(f"Identified {det_name} data")
shape = (self.nframes, self.nmodules) + self.detdata.module_shape
log.info("Virtual data shape: %r", shape)
layouts = {
self.image_label: VLayout(
shape, dtype=image_grp[self.image_label].dtype),
'gain': VLayout(shape, dtype=image_grp['gain'].dtype),
self.cell_id_label: VLayout(
(self.nframes, self.nmodules),
dtype=image_grp[self.cell_id_label].dtype
),
}
if 'mask' in image_grp:
layouts['mask'] = VLayout(shape, dtype=image_grp['mask'].dtype)
return self._map_layouts(layouts)
|