1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
import json
import logging
import os
import os.path as osp
import numpy as np
import re
from tempfile import mkstemp
import time
SCRATCH_ROOT_DIR = "/gpfs/exfel/exp/"
log = logging.getLogger(__name__)
def atomic_dump(obj, path, **kwargs):
"""Write JSON to a file atomically
This aims to avoid garbled files from multiple processes writing the same
cache. It doesn't try to protect against e.g. sudden power failures, as
forcing the OS to flush changes to disk may hurt performance.
"""
dirname, basename = osp.split(path)
fd, tmp_filename = mkstemp(dir=dirname, prefix=basename)
try:
with open(fd, 'w') as f:
json.dump(obj, f, **kwargs)
except:
os.unlink(tmp_filename)
raise
os.replace(tmp_filename, path)
class RunFilesMap:
"""Cached data about HDF5 files in a run directory
Stores the train IDs and source names in each file, along with some
metadata to check that the cache is still valid. The cached information
can be stored in:
- (run dir)/karabo_data_map.json
- (proposal dir)/scratch/.karabo_data_maps/raw_r0032.json
"""
cache_file = None
expected_cache_keys = frozenset({
'train_ids',
'control_sources',
'instrument_sources',
'suspect_train_indices',
'legacy_sources',
})
def __init__(self, directory):
self.directory = osp.abspath(directory)
self.dir_stat = os.stat(self.directory)
self.files_data = {}
self.candidate_paths = self.map_paths_for_run(directory)
self.load()
def map_paths_for_run(self, directory):
paths = [osp.join(directory, 'karabo_data_map.json')]
# After resolving symlinks, data on Maxwell is stored in either
# GPFS, e.g. /gpfs/exfel/d/proc/SCS/201901/p002212 or
# dCache, e.g. /pnfs/xfel.eu/exfel/archive/XFEL/raw/SCS/201901/p002212
# On the online cluster the resolved path stay:
# /gpfs/exfel/exp/inst/cycle/prop/(raw|proc)/run
maxwell_match = re.match(
# raw/proc instr cycle prop run
r'.+/(raw|proc|red|open)/(\w+)/(\w+)/(p\d+)/(r\d+)/?$',
os.path.realpath(directory)
)
online_match = re.match(
# instr cycle prop raw/proc run
r'^.+/(\w+)/(\w+)/(p\d+)/(raw|proc)/(r\d+)/?$',
os.path.realpath(directory)
)
if maxwell_match or online_match:
if maxwell_match:
raw_proc, instr, cycle, prop, run_nr = maxwell_match.groups()
else:
instr, cycle, prop, raw_proc, run_nr = online_match.groups()
fname = '%s_%s.json' % (raw_proc, run_nr)
prop_scratch = osp.join(
SCRATCH_ROOT_DIR, instr, cycle, prop, 'scratch'
)
if osp.isdir(prop_scratch):
paths.append(
osp.join(prop_scratch, '.karabo_data_maps', fname)
)
return paths
def load(self):
"""Load the cached data
This drops invalid or incomplete cache entries.
"""
loaded_data = []
t0 = time.monotonic()
paths_mtimes = []
for path in self.candidate_paths:
try:
st = os.stat(path)
paths_mtimes.append((path, st.st_mtime))
except (FileNotFoundError, PermissionError):
pass
# Try the newest found file (greatest mtime) first
for path, _ in sorted(paths_mtimes, key=lambda x: x[1], reverse=True):
try:
with open(path) as f:
loaded_data = json.load(f)
self.cache_file = path
log.debug("Loaded cached files map from %s", path)
break
except (FileNotFoundError, PermissionError, json.JSONDecodeError,):
pass
for info in loaded_data:
filename = info['filename']
try:
st = os.stat(osp.join(self.directory, filename))
except OSError:
continue
if self._cache_info_valid(info, st):
self.files_data[filename] = info
if loaded_data:
dt = time.monotonic() - t0
log.debug("Loaded cached files map in %.2g s", dt)
@classmethod
def _cache_info_valid(cls, info, file_stat: os.stat_result):
# Ignore the cached info if the file size or mtime have changed, or
# if it is missing expected keys (likely keys added more recently).
return ((file_stat.st_mtime == info['mtime'])
and (file_stat.st_size == info['size'])
and cls.expected_cache_keys.issubset(info.keys()))
def is_my_directory(self, dir_path):
return osp.samestat(os.stat(dir_path), self.dir_stat)
def get(self, path):
"""Get cache entry for a file path
Returns a dict or None
"""
dirname, fname = osp.split(osp.abspath(path))
if self.is_my_directory(dirname) and (fname in self.files_data):
d = self.files_data[fname]
res = {
'train_ids': np.array(d['train_ids'], dtype=np.uint64),
'control_sources': frozenset(d['control_sources']),
'instrument_sources': frozenset(d['instrument_sources']),
'legacy_sources': dict(d['legacy_sources']),
}
res['flag'] = flag = np.ones_like(d['train_ids'], dtype=np.bool_)
flag[d['suspect_train_indices']] = 0
return res
return None
def save(self, files):
"""Save the cache if needed
This skips writing the cache out if all the data files already have
valid cache entries. It also silences permission errors from writing
the cache file.
"""
need_save = False
for file_access in files:
dirname, fname = osp.split(osp.abspath(file_access.filename))
if self.is_my_directory(dirname) and fname not in self.files_data:
log.debug("Will save cached data for %s", fname)
need_save = True
# It's possible that the file we opened has been replaced by a
# new one before this runs. If possible, use the stat FileAccess got
# from the file descriptor, which will always be accurate.
# Stat-ing the filename will almost always work as a fallback.
if isinstance(file_access.metadata_fstat, os.stat_result):
st = file_access.metadata_fstat
else:
log.warning("No fstat for %r, will stat name instead",
fname)
st = os.stat(file_access.filename)
self.files_data[fname] = {
'filename': fname,
'mtime': st.st_mtime,
'size': st.st_size,
'train_ids': [int(t) for t in file_access.train_ids],
'control_sources': sorted(file_access.control_sources),
'instrument_sources': sorted(file_access.instrument_sources),
'legacy_sources': {k: file_access.legacy_sources[k]
for k in sorted(file_access.legacy_sources)},
'suspect_train_indices': [
int(i) for i in (~file_access.validity_flag).nonzero()[0]
],
}
if need_save:
t0 = time.monotonic()
save_data = [info for (_, info) in sorted(self.files_data.items())]
for path in self.candidate_paths:
try:
os.makedirs(osp.dirname(path), exist_ok=True)
atomic_dump(save_data, path, indent=2)
except PermissionError:
continue
else:
dt = time.monotonic() - t0
log.debug("Saved run files map to %s in %.2g s", path, dt)
return
log.debug("Unable to save run files map")
|