1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
import os
import numpy as np
import xarray as xr
import pytest
import h5py
from extra_data import RunDirectory, H5File
from extra_data.exceptions import TrainIDError, NoDataError
from . import make_examples
from .mockdata import write_file
from .mockdata.xgm import XGM
def test_get_keydata(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
print(run.instrument_sources)
am0 = run['SPB_DET_AGIPD1M-1/DET/0CH0:xtdf', 'image.data']
assert len(am0.files) == 1
assert am0.section == 'INSTRUMENT'
assert am0.is_instrument
assert am0.entry_shape == (2, 512, 128)
assert am0.ndim == 4
assert am0.dtype == np.dtype('u2')
assert {p.name for p in am0.source_file_paths} == {
'RAW-R0238-AGIPD00-S00000.h5'
}
xgm_beam_x = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value']
assert len(xgm_beam_x.files) == 2
assert xgm_beam_x.section == 'CONTROL'
assert xgm_beam_x.is_control
assert xgm_beam_x.entry_shape == ()
assert xgm_beam_x.ndim == 1
assert xgm_beam_x.dtype == np.dtype('f4')
assert {p.name for p in xgm_beam_x.source_file_paths} == {
'RAW-R0238-DA01-S00000.h5', 'RAW-R0238-DA01-S00001.h5'
}
data = xgm_beam_x.ndarray()
assert xgm_beam_x.nbytes == data.nbytes
# Ensure KeyData is not accidentally iterable
with pytest.raises(TypeError):
iter(xgm_beam_x)
def test_select_trains(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
xgm_beam_x = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value']
assert xgm_beam_x.shape == (64,)
sel1 = xgm_beam_x[:20] # Equivalent to .select_trains(np.s_[:20])
assert sel1.shape == (20,)
assert len(sel1.files) == 1
# Empty selection
sel2 = xgm_beam_x[80:]
assert sel2.shape == (0,)
assert len(sel2.files) == 1
assert sel2.xarray().shape == (0,)
# Single train
sel3 = xgm_beam_x[32]
assert sel3.shape == (1,)
def test_split_trains(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
xgm_beam_x = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value']
assert xgm_beam_x.shape == (64,)
chunks = list(xgm_beam_x.split_trains(3))
assert len(chunks) == 3
assert {c.shape for c in chunks} == {(21,), (22,)}
assert chunks[0].ndarray().shape == chunks[0].shape
chunks = list(xgm_beam_x.split_trains(3, trains_per_part=20))
assert len(chunks) == 4
assert {c.shape for c in chunks} == {(16,)}
def test_nodata(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
cam_pix = run['FXE_XAD_GEC/CAM/CAMERA_NODATA:daqOutput', 'data.image.pixels']
assert cam_pix.train_ids == list(range(10000, 10480))
assert len(cam_pix.files) == 2
assert cam_pix.shape == (0, 255, 1024)
arr = cam_pix.xarray()
assert arr.shape == (0, 255, 1024)
assert arr.dtype == np.dtype('u2')
dask_arr = cam_pix.dask_array(labelled=True)
assert dask_arr.shape == (0, 255, 1024)
assert dask_arr.dtype == np.dtype('u2')
assert list(cam_pix.trains()) == []
tid, data = cam_pix.train_from_id(10010)
assert tid == 10010
assert data.shape == (0, 255, 1024)
def test_iter_trains(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
xgm_beam_x = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value']
assert [t for (t, _) in xgm_beam_x.trains()] == list(range(10000, 10064))
for _, v in xgm_beam_x.trains():
assert isinstance(v, np.float32)
break
def test_iter_trains_keep_dims(mock_jungfrau_run):
run = RunDirectory(mock_jungfrau_run)
jf_data = run['SPB_IRDA_JF4M/DET/JNGFR01:daqOutput', 'data.adc']
for _, v in jf_data.trains(keep_dims=True):
assert v.shape == (1, 16, 512, 1024)
def test_iter_trains_include_empty(mock_sa3_control_data):
f = H5File(mock_sa3_control_data)
beamview = f['SA3_XTD10_IMGFEL/CAM/BEAMVIEW2:daqOutput', 'data.image.dims']
for expected_tid, (data1_tid, data1), (data2_tid, data2) in zip(
beamview.train_ids,
beamview.trains(include_empty=True),
beamview.trains(include_empty=True, keep_dims=True)
):
assert expected_tid == data1_tid == data2_tid
if (expected_tid % 2) == 0:
assert data1 is None
else:
assert data1.shape == (2,)
assert data2.shape == (expected_tid % 2, 2)
def test_get_train(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
xgm_beam_x = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value']
tid, val = xgm_beam_x.train_from_id(10005)
assert tid == 10005
assert isinstance(val, np.float32)
with pytest.raises(TrainIDError):
xgm_beam_x.train_from_id(11000)
tid, _ = xgm_beam_x.train_from_index(-10)
assert tid == 10054
with pytest.raises(IndexError):
xgm_beam_x.train_from_index(9999)
def test_get_train_keep_dims(mock_jungfrau_run):
run = RunDirectory(mock_jungfrau_run)
jf_adc = run['SPB_IRDA_JF4M/DET/JNGFR01:daqOutput', 'data.adc']
_, val = jf_adc.train_from_id(10005, keep_dims=True)
assert val.shape == (1, 16, 512, 1024)
_, val = jf_adc.train_from_index(-10, keep_dims=True)
assert val.shape == (1, 16, 512, 1024)
def test_data_counts(mock_reduced_spb_proc_run):
run = RunDirectory(mock_reduced_spb_proc_run)
# control data
xgm_beam_x = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value']
count = xgm_beam_x.data_counts()
assert count.index.tolist() == xgm_beam_x.train_ids
assert (count.values == 1).all()
# instrument data
camera = run['SPB_IRU_CAM/CAM/SIDEMIC:daqOutput', 'data.image.pixels']
count = camera.data_counts()
assert count.index.tolist() == camera.train_ids
mod = run['SPB_DET_AGIPD1M-1/DET/0CH0:xtdf', 'image.data']
count = mod.data_counts()
assert count.index.tolist() == mod.train_ids
assert count.values.sum() == mod.shape[0]
def test_data_counts_empty(mock_fxe_raw_run):
run = RunDirectory(mock_fxe_raw_run)
cam_nodata = run['FXE_XAD_GEC/CAM/CAMERA_NODATA:daqOutput', 'data.image.pixels']
count_ser = cam_nodata.data_counts(labelled=True)
assert len(count_ser) == 480
assert count_ser.sum() == 0
count_arr = cam_nodata.data_counts(labelled=False)
assert len(count_arr) == 480
assert count_arr.sum() == 0
count_none_ser = cam_nodata.drop_empty_trains().data_counts(labelled=True)
assert len(count_none_ser) == 0
count_none_arr = cam_nodata.drop_empty_trains().data_counts(labelled=False)
assert len(count_none_arr) == 0
@pytest.fixture()
def fxe_run_module_offset(tmp_path):
run_dir = tmp_path / 'fxe-run-mod-offset'
run_dir.mkdir()
make_examples.make_fxe_run(run_dir, format_version='1.0')
# Shift the train IDs for a module by 1, so it has data for a different set
# of train IDs to other sources.
with h5py.File(run_dir / 'RAW-R0450-LPD08-S00000.h5', 'r+') as f:
tids_dset = f['INDEX/trainId']
tids_dset[:] = tids_dset[:] + 1
return run_dir
def test_data_counts_missing_train(fxe_run_module_offset):
run = RunDirectory(fxe_run_module_offset)
assert len(run.train_ids) == 481
lpd_m8 = run['FXE_DET_LPD1M-1/DET/8CH0:xtdf', 'image.cellId']
ser = lpd_m8.data_counts(labelled=True)
assert len(ser) == 480
np.testing.assert_array_equal(ser.index, run.train_ids[1:])
arr = lpd_m8.data_counts(labelled=False)
assert len(arr) == 481
assert arr[0] == 0
np.testing.assert_array_equal(arr[1:], 128)
lpd_m8_w_data = lpd_m8.drop_empty_trains()
ser = lpd_m8_w_data.data_counts(labelled=True)
assert len(ser) == 480
np.testing.assert_array_equal(ser.index, run.train_ids[1:])
arr = lpd_m8_w_data.data_counts(labelled=False)
assert len(arr) == 480
np.testing.assert_array_equal(arr, 128)
def test_select_by(mock_spb_raw_run):
run = RunDirectory(mock_spb_raw_run)
am0 = run['SPB_DET_AGIPD1M-1/DET/0CH0:xtdf', 'image.data']
subrun = run.select(am0)
assert subrun.all_sources == {am0.source}
assert subrun.keys_for_source(am0.source) == {am0.key}
def test_drop_empty_trains(mock_sa3_control_data):
f = H5File(mock_sa3_control_data)
beamview = f['SA3_XTD10_IMGFEL/CAM/BEAMVIEW2:daqOutput', 'data.image.dims']
assert len(beamview.train_ids) == 500
a1 = beamview.ndarray()
assert a1.shape == (250, 2)
frame_counts = beamview.data_counts(labelled=False)
assert frame_counts.shape == (500,)
assert frame_counts.min() == 0
beamview_w_data = beamview.drop_empty_trains()
assert len(beamview_w_data.train_ids) == 250
np.testing.assert_array_equal(beamview_w_data.ndarray(), a1)
frame_counts = beamview_w_data.data_counts(labelled=False)
assert frame_counts.shape == (250,)
assert frame_counts.min() == 1
def test_single_value(mock_sa3_control_data, monkeypatch):
f = H5File(mock_sa3_control_data)
imager = f['SA3_XTD10_IMGFEL/CAM/BEAMVIEW:daqOutput', 'data.image.pixels']
flux = f['SA3_XTD10_XGM/XGM/DOOCS', 'pulseEnergy.photonFlux']
# Try without data for a source and key.
with pytest.raises(NoDataError):
imager.as_single_value() # FEL imager with no data.
with pytest.raises(NoDataError):
flux[:0].as_single_value() # No data through selection.
# Monkeypatch some actual data into the KeyData object
data = np.arange(flux.shape[0])
monkeypatch.setattr(flux, 'ndarray', lambda: data)
# Try some tolerances that have to fail.
with pytest.raises(ValueError):
flux.as_single_value()
with pytest.raises(ValueError):
flux.as_single_value(atol=1)
with pytest.raises(ValueError):
flux.as_single_value(rtol=0.1)
# Try with large enough tolerances.
assert flux.as_single_value(atol=len(data)/2) == np.median(data)
assert flux.as_single_value(rtol=0.5, atol=len(data)/4) == np.median(data)
assert flux.as_single_value(rtol=1) == np.median(data)
# Other reduction options
assert flux.as_single_value(rtol=1, reduce_by='mean') == np.mean(data)
assert flux.as_single_value(rtol=1, reduce_by=np.mean) == np.mean(data)
assert flux.as_single_value(atol=len(data)-1, reduce_by='first') == 0
# Try vector data.
intensity = f['SA3_XTD10_XGM/XGM/DOOCS:output', 'data.intensityTD']
data = np.repeat(data, intensity.shape[1]).reshape(-1, intensity.shape[-1])
monkeypatch.setattr(intensity, 'ndarray', lambda: data)
with pytest.raises(ValueError):
intensity.as_single_value()
np.testing.assert_equal(intensity.as_single_value(rtol=1), np.median(data))
def test_ndarray_out(mock_spb_raw_run):
f = RunDirectory(mock_spb_raw_run)
cam = f['SPB_IRU_CAM/CAM/SIDEMIC:daqOutput', 'data.image.dims']
buf_new = cam.ndarray() # New copy of data.
buf_in = np.zeros(cam.shape, dtype=cam.dtype)
buf_out = cam.ndarray(out=buf_in) # In-place copy of data.
np.testing.assert_allclose(buf_new, buf_out)
assert buf_in is buf_out
def test_xarray_structured_data(mock_remi_run):
run = RunDirectory(mock_remi_run)
dset = run['SQS_REMI_DLD6/DET/TOP:output', 'rec.hits'].xarray()
assert isinstance(dset, xr.Dataset)
assert list(dset.data_vars.keys()) == ['x', 'y', 't', 'm']
arrs = list(dset.data_vars.values())
assert all([arr.shape == (100, 50) for arr in arrs])
assert all([arr.dtype == np.float64 for arr in arrs[:3]])
assert arrs[3].dtype == np.int32
np.testing.assert_equal(dset.coords['trainId'], np.arange(10000, 10100))
@pytest.fixture()
def run_with_file_no_trains(mock_spb_raw_run):
extra_file = os.path.join(mock_spb_raw_run, 'RAW-R0238-DA01-S00002.h5')
write_file(extra_file, [
XGM('SPB_XTD9_XGM/DOOCS/MAIN'),
], ntrains=0)
try:
yield mock_spb_raw_run
finally:
os.unlink(extra_file)
def test_file_no_trains(run_with_file_no_trains):
run = RunDirectory(run_with_file_no_trains)
xpos = run['SPB_XTD9_XGM/DOOCS/MAIN', 'beamPosition.ixPos'].ndarray()
assert xpos.shape == (64,)
def test_attributes(mock_sa3_control_data):
run = H5File(mock_sa3_control_data)
# INSTRUMENT key.
xgm_intensity = run['SA3_XTD10_XGM/XGM/DOOCS:output', 'data.intensityTD']
attrs = xgm_intensity.attributes()
assert isinstance(attrs, dict)
assert attrs['metricPrefixName'] == 'micro'
assert attrs['unitSymbol'] == 'J'
# CONTROL key.
xgm_beampos_x = run['SA3_XTD10_XGM/XGM/DOOCS', 'beamPosition.ixPos']
attrs = xgm_beampos_x.attributes()
assert isinstance(attrs, dict)
assert attrs['alias'] == 'IX.POS'
assert attrs['description'] == 'Calculated X position [mm]'
assert attrs['daqPolicy'][0] == -1
def test_units(mock_sa3_control_data):
run = H5File(mock_sa3_control_data)
xgm_intensity = run['SA3_XTD10_XGM/XGM/DOOCS:output', 'data.intensityTD']
assert xgm_intensity.units == 'μJ'
assert xgm_intensity.units_name == 'microjoule'
# Check that it still works after selecting 0 trains
assert xgm_intensity.select_trains(np.s_[:0]).units == 'μJ'
# units are added to xarray's attributes
assert xgm_intensity.xarray().attrs['units'] == 'μJ'
|