1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
<HTML>
<HEAD>
<TITLE>Scattered points</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
<P><font size="+2" color="green">Scattered points</font></P>
<TABLE border="1" cols="2" frame="box" rules="all" width="608">
<TR>
<TD width="15%" valign="top"><B>Syntax</B>:</TD>
<TD width="85%" valign="top"><CODE>
CONTOUR x y v nctr { min { incr }}<br />
CONTOUR\COLOURS colr x y v nctr { min { incr }}<br />
CONTOUR\SPECIFIC x y v lvls<br />
CONTOUR\SPECIFIC\COLOURS colr x y v lvls</CODE>
</TD></TR>
<TR>
<TD width="15%" valign="top"><B>Qualifiers:</B></TD>
<TD width="85%" valign="top"><CODE>
\SPECIFIC, \POLAR, \LEGEND, \COLOURS, \PARTIAL, \RESET, \BORDER, \AXES, \COORDINATES</CODE>
</TD></TR>
<TR>
<TD width="15%" valign="top"><B>Defaults:</B></TD>
<TD width="85%" valign="top"><CODE>
\-SPECIFIC, \-POLAR, \-LEGEND, \-COLOURS, \-RESET, \BORDER, \AXES, \-COORDINATES</CODE>
</TD></TR>
</TABLE>
<P>
If <CODE>z</CODE> is a vector, the vectors <CODE>x</CODE> and <CODE>y</CODE> are assumed to represent a
scattered set of coordinates, where <code>z[i]</code> is the altitude corresponding to the
coordinate location <code>(x[i],y[i])</code>. The vectors <CODE>x</CODE> and <CODE>y</CODE> must
be entered if <CODE>z</CODE> is a vector.</P>
<P>
Contours are computed by successive solution of quintic polynomial equations.
The irregularly distributed data points are organized as triangles and the
partial derivatives at each point are estimated from the function values of
the neighboring points.</P>
<P>
Areas and volumes cannot be calculated from scattered data.</P>
<P>
<a href="axes.htm"><img src="../shadow_left.gif">
<font size="+1" color="olive">Axes</font></a><br />
<a href="matrixdata.htm"><img src="../shadow_right.gif">
<font size="+1" color="olive">Matrix data</font></a>
</P>
</body>
</html>
|