File: filtercommand.htm

package info (click to toggle)
extrema 4.3.6-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 19,212 kB
  • ctags: 6,452
  • sloc: cpp: 86,428; sh: 8,229; makefile: 814
file content (71 lines) | stat: -rw-r--r-- 2,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
<HTML>
<HEAD>
<TITLE>FILTER command</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">

<P><font size="+3" color="green"><B>FILTER command</B></font></P>

<TABLE border="1" cols="2" frame="box" rules="all" width="572">
<TR>
<TD width="15%" valign="top"><B>Syntax</B>:</TD>
<TD width="85%" valign="top"><CODE>
FILTER\MEDIAN x f npt<br />
FILTER\MEAN x f npt<br />
FILTER\-RECURSIVE x f c<br />
FILTER\RECURSIVE x f c d</CODE>
</TD></TR>
<TR>
<TD valign="top"><B>Qualifiers</B>:</TD>
<TD valign="top"><CODE>\MEDIAN, \MEAN, \RECURSIVE</CODE></TD></TR>
<TR>
<TD valign="top"><B>Defaults</B>:</TD>
<TD valign="top"><CODE>\-RECURSIVE</CODE></TD></TR>
<TR>
<TD valign="top"><B>Examples</B>:</TD>
<TD valign="top"><CODE>
FILTER\MEDIAN X XF 5<br />
FILTER\-RECURSIVE X XF [1;-2;1]<br />
FILTER\MEAN X XF -5<br />
FILTER\RECURSIVE X XF [.3584;1.2832;.3584;0;0] [0;1]</CODE>
</TD></TR>
</TABLE>
<P>
 A digital filter is a linear combination of the input data,
 <IMG SRC="x.gif">, and possibly the output data, <IMG SRC="f.gif">. The
 input data is assumed to be <em>equally spaced</em> samples of some
 continuously varying quantity; and any error or noise is in the measurements. In this
 implementation of filters, the input data is assumed to have unit spacing, so a scale
 factor may have to be applied to produce the correctly scaled output data.</P>
<P>
 The simplest kinds of filters are the nonrecursive filters defined by the
 convolution formula:</P>
<P>
 <center><IMG SRC="fneq.gif"></center></P>
<P>
 The coefficients <IMG SRC="ck.gif"> are
 the constants of the filter, the <IMG SRC="xn-k.gif"> are the input
 data, and the <IMG SRC="fn.gif"> are the outputs. When values of the output as well as the data
 values are used to compute the output values, the filter is called a recursive filter. It is
 usual to limit the range of nonzero coefficients to current and past values
 of the data <IMG SRC="xn.gif"> and to only past values of the output
 <IMG SRC="fn.gif">. This type of filter is called causal recursive and can be defined by the
 convolution formula:</P>
<P>
 <center><IMG SRC="fneq2.gif"></center></P>
<P>
 Nonrecursive or recursive filters using constant coefficients
 <IMG SRC="ck.gif">&nbsp; and <IMG SRC="dk.gif">&nbsp; are called time-invariant filters.</P>
<P>
 It can be shown that the sum of the squares of the filter
 coefficients measures the noise amplification of the filtering process. Thus,
 the variance, <IMG SRC="sigma2.gif">, will be
 amplified by <IMG SRC="sumsigma.gif">.</P>
<P>
 <a href="median.htm"><font size="+1" color="olive">Median filters</font></a><br />
 <a href="mean.htm"><font size="+1" color="olive">Mean filters</font></a><br />
 <a href="nonrecursive.htm"><font size="+1" color="olive">Nonrecursive filters</font></a><br />
 <a href="recursive.htm"><font size="+1" color="olive">Recursive filters</font></a><br />
 <a href="examples.htm"><font size="+1" color="olive">Examples</font></a></P>
</BODY>
</HTML>