File: normaldist.htm

package info (click to toggle)
extrema 4.3.6-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 19,212 kB
  • ctags: 6,452
  • sloc: cpp: 86,428; sh: 8,229; makefile: 814
file content (46 lines) | stat: -rw-r--r-- 1,640 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
<HTML>
<HEAD>
<TITLE>Normal Distribution</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">

<P><font size="+2" color="green">Normal distribution</font></P>
<P>
 Assume that each data point, <code>y<sub>k</sub></code>, has an error that is
 independently random and distributed as a normal distribution, that is,</P>
<P>
 <IMG SRC="img39.gif"></P>
<P>
 where <code>&sigma;<sup>2</sup></code> is the variance, and
 <code><i>f</i>(x<sub>k</sub>,p)</code> is the expression that we want to fit.</P>
<P>
 <IMG SRC="img42.gif"></P>
<P>
 The goal is to minimize the <code>&chi;<sup>2</sup></code> function:</P>
<P>
 <IMG SRC="img43.gif"></P>
<P>
 where the weights are defined as: <code>w&equiv;1/&sigma;<sup>2</sup></code>.
 Consider the Taylor expansion of <code>&chi;<sup>2</sup></code>:</P>
<P>
 <IMG SRC="img46.gif"></P>
<P>
 Define the arrays <IMG SRC="img27.gif">, <IMG SRC="img28.gif">&nbsp; and <IMG SRC="img29.gif">:</P>
<P>
 <IMG SRC="img47.gif"></P>
<P>
 Linearize and the problem reduces to solving the matrix equation</p>
<p>
 <center><IMG SRC="img34.gif"></center></P>
<P>
 <a href="chi2andweights.htm"><font size="+1" color="olive">Chi-square and weights</font></a><br />
 <a href="hint.htm"><font size="+1" color="olive">Hint for physicists</font></a><br />
 <a href="degfree.htm"><font size="+1" color="olive">Degrees of freedom</font></a></P>
<P>
 <a href="update.htm"><img src="../shadow_left.gif">&nbsp;
 <font size="+1" color="olive">Update after a fit</font></a><br />
 <a href="poissondist.htm"><img src="../shadow_right.gif">&nbsp;
 <font size="+1" color="olive">Poisson distribution</font></a>
</P>
</BODY>
</HTML>