File: det.htm

package info (click to toggle)
extrema 4.3.6-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 19,212 kB
  • ctags: 6,452
  • sloc: cpp: 86,428; sh: 8,229; makefile: 814
file content (34 lines) | stat: -rw-r--r-- 1,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
<HTML>
<HEAD>
<TITLE>Matrix determinant</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF" fgcolor="#000000">

<P>
<font size="+3" color="green"><B>Matrix determinant</B></font></P>
<P>
<TABLE border="1" cols="2" frame="box" rules="all" width="572">
<TR>
<TD width="15%" valign="top"><B>Syntax</B>:</TD>
<TD width="85%"><CODE>
a = DET(m)</CODE>
</TD></TR>
</table></p>
<p>
 The function <CODE>DET(m)</code> returns the determinant
 of the matrix <CODE>m</code>, which <i>must</i> be a square matrix. The output is a scalar.</p>
<p>
 <i>Beware</i>: The determinant of a reasonably sized matrix can get very large,
 or very small, leading to over/underflows.</p>
<p>
 The method used to find the determinant uses the LU decomposition of the
 matrix argument.  Please refer to the discussion on LU decomposition of a
 matrix in the <CODE><a href="../Inverse/inverse.htm">INVERSE</a></code> function section.</p>
<P>
 <a href="../Deriv/deriv.htm"><img align="top" border="0" src="../../../shadow_left.gif">&nbsp;
 <font size="+1" color="olive">Derivative</font></a><br />
 <a href="../Dilog/dilog.htm"><img align="top" border="0" src="../../../shadow_right.gif">&nbsp;
 <font size="+1" color="olive">Dilogarithm</font></a>
</P>
</BODY>
</HTML>