1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
<HTML>
<HEAD>
<TITLE>Matrix determinant</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF" fgcolor="#000000">
<P>
<font size="+3" color="green"><B>Matrix determinant</B></font></P>
<P>
<TABLE border="1" cols="2" frame="box" rules="all" width="572">
<TR>
<TD width="15%" valign="top"><B>Syntax</B>:</TD>
<TD width="85%"><CODE>
a = DET(m)</CODE>
</TD></TR>
</table></p>
<p>
The function <CODE>DET(m)</code> returns the determinant
of the matrix <CODE>m</code>, which <i>must</i> be a square matrix. The output is a scalar.</p>
<p>
<i>Beware</i>: The determinant of a reasonably sized matrix can get very large,
or very small, leading to over/underflows.</p>
<p>
The method used to find the determinant uses the LU decomposition of the
matrix argument. Please refer to the discussion on LU decomposition of a
matrix in the <CODE><a href="../Inverse/inverse.htm">INVERSE</a></code> function section.</p>
<P>
<a href="../Deriv/deriv.htm"><img align="top" border="0" src="../../../shadow_left.gif">
<font size="+1" color="olive">Derivative</font></a><br />
<a href="../Dilog/dilog.htm"><img align="top" border="0" src="../../../shadow_right.gif">
<font size="+1" color="olive">Dilogarithm</font></a>
</P>
</BODY>
</HTML>
|