File: bessel.htm

package info (click to toggle)
extrema 4.4.4.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 19,416 kB
  • ctags: 6,689
  • sloc: cpp: 88,991; sh: 8,229; makefile: 480
file content (62 lines) | stat: -rw-r--r-- 1,722 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
<HTML>
<HEAD>
<TITLE>Bessel functions</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF" fgcolor="#000000">

<P><A NAME="bessel"></A>
 <font size="+3" color="green"><B>Bessel functions</B></font></P>
<P>
<TABLE border="1" cols="2" frame="box" rules="all" width="572">
<TR>
<TD width="15%" valign="top"><B>Syntax</B>:</TD>
<TD width="85%"><CODE>
y = BESJ0(x)<br />
y = BESJ1(x)<br />
y = BESY0(x)<BR />
y = BESY1(x)<br />
y = BESI0(x)<br />
y = BESI1(x)<br />
y = BESK0(x)<br />
y = BESK1(x)</CODE>
</TD></TR>
</table></p>
<P>
 The Bessel functions of the first and second kinds, <i>J<sub>n</sub></i>
 and <i>Y<sub>n</sub></i>&nbsp;, are
 linearly independent solutions to the differential equation</P>
<P>
 <center><IMG WIDTH="271" HEIGHT="50" ALIGN="BOTTOM" SRC="besselI01.gif"></center></P>
<p>
 Bessel functions arise in solving differential equations for systems with
 cylindrical symmetry.</P>
<P><center>
 <IMG WIDTH="345" HEIGHT="50" SRC="besselI02.gif"></P>
<P>
 <IMG WIDTH="388" HEIGHT="50" SRC="besselI03.gif"></P>
<P>
 <IMG WIDTH="470" HEIGHT="170" SRC="besselI04.gif"></P>
<P>
 <IMG WIDTH="595" HEIGHT="80" SRC="besselI05.gif"></P></center>
<P>
 The modified Bessel functions of the first and second kinds, 
 <i>I<sub>n</sub></i> and <i>K<sub>n</sub></i>, are solutions to the
 differential equation</P>
<P><center>
 <IMG SRC="besselI06.gif"></center></P>
<P>
 <IMG SRC="besselI07.gif"></P>
<P>
 <IMG SRC="besselI08.gif"></P>
<P>
 <IMG SRC="besselI09.gif"></P>
<P>
 <IMG SRC="besselI10.gif"></P>
<P>
 where <img src="besselI11.gif"> is the Psi function
 (also known as the DiGamma function), and where
 <img src="besselI12.gif"> is Euler's constant</P>
<P>
 <center><IMG SRC="besselI13.gif"></center></P>
</BODY>
</HTML>