File: integral.htm

package info (click to toggle)
extrema 4.4.4.dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 19,416 kB
  • ctags: 6,689
  • sloc: cpp: 88,991; sh: 8,229; makefile: 480
file content (77 lines) | stat: -rw-r--r-- 2,574 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
<HTML>
<HEAD>
<TITLE>Integration</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF" fgcolor="#000000">

<P><A NAME="integral"></A>
<font size="+3" color="green"><B>Integration</B></font></P>
<P>
<TABLE border="1" cols="2" frame="box" rules="all" width="572">
<TR>
<TD width="15%" valign="top"><B>Syntax</B>:</TD>
<TD width="85%"><CODE>
vout = INTEGRAL(x,y)<br />
voud = INTEGRAL(x,y,'SMOOTH')<BR />
voud = INTEGRAL(x,y,'TRAPEZOID')</CODE>
</TD></TR>
</table></p>
<p>
 The <CODE>INTEGRAL</CODE> function integrates the vector
 <CODE>y</CODE>, the dependent variable, with respect to
 vector <CODE>x</CODE>, the independent variable.
 The output of this function is a vector with the same length as <CODE>x</CODE>. The last
 element of the output vector is the integral over the full
 range of <CODE>x</CODE>. Currently, integration using
 interpolating splines, using no keyword or the keyword <code>SMOOTH</code>,
 or the trapezoid rule, using keyword <code>TRAPEZOID</code>, are the only types available.</P>
<P>
 <font size="+1" color="green">Interpolating splines</font></P>
<p>
 <TABLE border="0" cols="2" width="572">
 <TR>
 <TD width="15%" valign="top"><B>Syntax</B>:</TD>
 <TD width="85%"><CODE>vout = INTEGRAL(x,y)<br />
 voud = INTEGRAL(x,y,'SMOOTH')</CODE>
</TD></TR>
</table></p>
<P>
 This integration method utilizes an interpolating spline under tension. The spline tension
 used is the current value of <CODE>
 <a href="../Characteristics/tension.htm">TENSION</a></CODE>, which may be
 changed with the <CODE><font color="blue"><a href="../Commands/Set.htm">SET TENSION</A>
 </font></CODE> command. The nature of the interpolating curve varies continuously from pure cubic
 splines, for <CODE>TENSION = 0</CODE>, to a piecewise linear curve, that is,
 points joined by straight line segments, for large <CODE>TENSION</CODE>.</P>
<p>
 <CODE>x</CODE> must be strictly monotonically increasing.</p>
<P>
 <font size="+1" color="green">Example</font></P>
<p>
 The following code produces the picture below (except for the text which was added
 interactively).</P>
<P>
 <font color="blue"><pre>
 clear
 defaults
 !
 pi=acos(-1)
 generate x 0,,2*pi 100
 y = cos(x)^3+sin(x)^3
 graph x y
 !
 set linecolor red
 graph/overlay x integral(x,y)
 set linecolor black
 replot
 </pre></font></P>
<P>
 <center><IMG ALIGN=BOTTOM SRC="integralI01.png"></center></P>
<P>
 <font size="+1" color="green">Trapezoid rule</font></P>
<p>
 <b>Syntax:</b>&nbsp;&nbsp;&nbsp; <code>vout = INTEGRAL(x,y,'TRAPEZOID')</code></p>
<p>
 This integration method uses the trapezoid rule.</p>
</BODY>
</HTML>