1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
<HTML>
<HEAD>
<TITLE>Matrix variables</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
<P><A NAME="variablematrix"></A>
<font size="+2" color="green">Matrix variables</font></P>
<P>
A matrix is a two dimensional array of double precision real numbers, with
rows and columns. The row and column indices of a matrix are separated with
a comma. The row dimension is specified first. There is no maximum size for
matrices.</P>
<P>
A literal matrix can be a list of vectors, such as,
<code>[[1;2;3];[4;5;6];[7;8;9]]</code>, or an expression that results
in a matrix, such as <code>[2:5]><[2:6]</code>.</P>
<P>
The following table shows the possible ways that
variables can be considered to be equivalent to matrices, that is, can be
used wherever matrices are expected.</P>
<p>
Let <code>x</code> and <code>y</code> be vectors.
Suppose that <code>M</code> is a matrix.</p>
<P>
<center>
<table cellpadding="2">
<tr>
<td><code>M</code></td><td>=</td><td><code>M[i,j]</code> for <code>i=1,...,VLEN(M)[1],
j=1,...,VLEN(M)[2]</code></td>
</tr><tr>
<td valign="top"><code>M[x,y]</code></td><td valign="top">=</td>
<td><code>M[i,j]</code> for <code>i=x[1],x[2],...,x[#], j=y[1],y[2],...,y[#]</code></td>
</tr></table></center></p>
<P>
<a href="VariablesS03.htm"><img src="../shadow_left.gif">
<font size="+1" color="olive">Vector variables</font></a><br />
<a href="VariablesS05.htm"><img src="../shadow_right.gif">
<font size="+1" color="olive">String variables</font></a>
</P>
</body>
</html>
|