1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/*
* path.cc - Pathfinding algorithms.
*
* Copyright (C) 2000-2001 The Exult Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <iostream>
#include "hash_utils.h"
#include "PathFinder.h"
#include "exult_constants.h"
#include "vec.h"
using std::cout;
using std::endl;
using std::size_t;
Tile_coord *Find_path
(
Tile_coord start, // Where to start from.
Tile_coord goal, // Where to end up.
Pathfinder_client *client, // Provides costs.
int& pathlen // Length of path returned.
);
/*
* Iterate through neighbors of a tile (in 2 dimensions).
*/
class Neighbor_iterator
{
Tile_coord tile; // Original tile.
static int coords[16]; // Coords to go through ((x,y) pairs)
int index; // 0-7.
public:
Neighbor_iterator(Tile_coord t) : tile(t), index(0)
{ }
// Get next neighbor.
int operator()(Tile_coord& newt)
{
if (index < 8)
{
newt = Tile_coord(tile.tx + coords[2*index],
tile.ty + coords[2*index + 1], tile.tz);
index++;
// Handle world-wrapping.
newt.tx = (newt.tx + c_num_tiles)%c_num_tiles;
newt.ty = (newt.ty + c_num_tiles)%c_num_tiles;
return (1);
}
return (0);
}
};
/*
* Statics:
*/
int Neighbor_iterator::coords[16] = {
-1, -1, 0, -1, 1, -1,
-1, 0, 1, 0,
-1, 1, 0, 1, 1, 1
};
/*
* A node for our search:
*/
class Search_node
{
Tile_coord tile; // The coords (x, y, z) in tiles.
short start_cost; // Actual cost from start.
short goal_cost; // Estimated cost to goal.
short total_cost; // Sum of the two above.
Search_node *parent; // Prev. in path.
Search_node *priority_next; // ->next with same total_cost, or
// NULL if not in 'open' set.
public:
Search_node(Tile_coord& t, short scost, short gcost, Search_node *p)
: tile(t), start_cost(scost), goal_cost(gcost),
parent(p), priority_next(0)
{
total_cost = gcost + scost;
}
// For creating a key to search for.
Search_node(Tile_coord& t) : tile(t)
{ }
Tile_coord get_tile() const
{ return tile; }
int get_start_cost()
{ return start_cost; }
int get_goal_cost()
{ return goal_cost; }
int get_total_cost()
{ return total_cost; }
int is_open() // In 'open' priority queue?
{ return priority_next != 0; }
void update(short scost, short gcost, Search_node *p)
{
start_cost = scost;
goal_cost = gcost;
total_cost = gcost + scost;
parent = p;
}
// Create path back to start.
Tile_coord *create_path(int& pathlen)
{
int cnt = 1; // This.
// Count back to start.
Search_node *each = this;
while ((each = each->parent) != 0)
cnt++;
pathlen = cnt - 1; // Don't want starting tile.
Tile_coord *result = new Tile_coord[pathlen];
each = this;
for (int i = pathlen - 1; i >= 0; i--)
{
result[i] = each->tile;
each = each->parent;
}
return result;
}
#if VERIFYCHAIN
// Returns 0 if bad chain.
int verify_chain(Search_node *last, int removed = 0)
{
if (!last)
return (1);
int found = 0;
Search_node *prev = last;
int cnt = 0;
do
{
Search_node *next = prev->priority_next;
if (next == this)
found = 1;
prev = next;
if (cnt > 10000)
break;
}
while (prev != last);
if (!found && !removed)
return (0);
if (cnt == 10000)
return (0);
return (1);
}
#endif
// Add to chain of same priorities.
void add_to_chain(Search_node *&last)
{
if (last)
{
priority_next = last->priority_next;
last->priority_next = this;
}
else
{
last = this;
priority_next = this;
}
#if VERIFYCHAIN
if (!verify_chain(last))
cout << "Bad chain after adding." << endl;
#endif
}
// Remove this from its chain.
void remove_from_chain(Search_node *&last)
{
#if VERIFYCHAIN
if (!verify_chain(last))
cout << "Bad chain before removing." << endl;
#endif
if (priority_next == this)
// Only one in chain?
last = 0;
else
{ // Got to find prev. to this.
Search_node *prev = last;
do
{
Search_node *next = prev->priority_next;
if (next == this)
break;
prev = next;
}
while (prev != last);
if (prev)
{
prev->priority_next = priority_next;
if (last == this)
last = priority_next;
}
}
priority_next = 0; // No longer in 'open'.
#if VERIFYCHAIN
if (!verify_chain(last, 1))
cout << "Bad chain after removing." << endl;
#endif
}
// Remove 1st from a priority chain.
static Search_node *remove_first_from_chain(Search_node *&last)
{
Search_node *first = last->priority_next;
if (first == last) // Last entry?
last = 0;
else
last->priority_next = first->priority_next;
first->priority_next = 0;
return first;
}
};
#ifndef DONT_HAVE_HASH_SET
/*
* Hash function for nodes:
*/
class Hash_node
{
public:
size_t operator() (const Search_node *a) const
{
const Tile_coord t = a->get_tile();
return ((t.tz << 24) + (t.ty << 12) + t.tx);
}
};
/*
* For testing if two nodes match.
*/
class Equal_nodes
{
public:
bool operator() (const Search_node *a, const Search_node *b) const
{
Tile_coord ta = a->get_tile(), tb = b->get_tile();
return ta == tb;
}
};
#else
/*
* "Less than" relation for nodes
*/
class Less_nodes
{
public:
bool operator() (const Search_node *a, const Search_node *b) const
{
Tile_coord ta = a->get_tile(), tb = b->get_tile();
uint32 apos = ta.tx << 16, bpos = tb.tx << 16;
apos |= ta.ty << 4;
bpos |= tb.ty << 4;
apos |= ta.tz;
bpos |= tb.tz;
/* Because #(short x short) is <= #int, we can define an injective projection,
** which is all we need. */
return apos < bpos;
}
};
#endif
/*
* The priority queue for the A* algorithm:
*/
class A_star_queue
{
Exult_vector<Search_node*> open;// Nodes to be done, by priority. Each
// is a ->last node in chain.
int best; // Index of 1st non-null ent. in open.
// For finding each tile's node:
#ifndef DONT_HAVE_HASH_SET
typedef hash_set<Search_node *, Hash_node, Equal_nodes> Lookup_set;
#else
typedef std::set<Search_node *, Less_nodes> Lookup_set;
#endif
Lookup_set lookup;
public:
#ifndef DONT_HAVE_HASH_SET
A_star_queue() : open(256), lookup(1000)
#else
A_star_queue() : open(256), lookup()
#endif
{
open.insert(open.begin(), 256, (Search_node *) 0);
best = open.size(); // Best is past end.
}
~A_star_queue()
{
#if 1
/*
This _should_ work, but might hang some hash_set implementations.
The problem is that on deleting the Search_node, the hash_set can
no longer properly evaluate the hash value (since the hash function
dereferences the Search_node* stored). This might cause an endless
loop.
*/
for(Lookup_set::iterator X = lookup.begin(); X != lookup.end();) {
Search_node *sn = *X;
X++;
delete sn; // only delete this _after_ iterating
}
#endif
lookup.clear(); // Remove all nodes.
}
void add_back(Search_node *nd) // Add an existing node back to 'open'.
{
int total_cost = nd->get_total_cost();
Search_node *last = total_cost < open.size() ?
open[total_cost] : 0;
nd->add_to_chain(last); // Add node to this chain.
open.put(total_cost, last);
if (total_cost < best)
best = total_cost;
}
void add(Search_node *nd) // Add new node to 'open' set.
{
lookup.insert(nd);
add_back(nd);
}
// Remove node from 'open' set.
void remove_from_open(Search_node *nd)
{
if (!nd->is_open())
return; // Nothing to do.
int total_cost = nd->get_total_cost();
Search_node *last = total_cost < open.size() ?
open[total_cost] : 0;
nd->remove_from_chain(last);
// Store updated 'last'.
open.put(total_cost, last);
if (!last) // Last in chain?
{
if (total_cost == best)
{
int cnt = open.size();
for (best++; best < cnt; best++)
if (open[best] != 0)
break;
}
}
}
Search_node *pop() // Pop best from priority queue.
{
Search_node *last = best < open.size() ? open[best] : 0;
if (!last)
return (0);
// Return 1st in list.
Search_node *node = Search_node::remove_first_from_chain(last);
// Store updated 'last'.
open.put(best, last);
if (!last) // List now empty?
{
int cnt = open.size();
for (best++; best < cnt; best++)
if (open[best] != 0)
break;
}
return node;
}
// Find node for given tile.
Search_node *find(Tile_coord tile)
{
Search_node key(tile);
#ifndef DONT_HAVE_HASH_SET
hash_set<Search_node *, Hash_node, Equal_nodes>::iterator it =
lookup.find(&key);
#else
std::set<Search_node *, Less_nodes>::iterator it =
lookup.find(&key);
#endif
if (it != lookup.end())
return *it;
else
return 0;
}
};
static int tracing = 0;
/*
* First cut at using the A* pathfinding algorithm.
*
* Output: ->(allocated) array of Tile_coords to follow, or 0 if failed.
*/
Tile_coord *Find_path
(
Tile_coord start, // Where to start from.
Tile_coord goal, // Where to end up.
Pathfinder_client *client, // Provides costs.
int& pathlen // Length of path returned.
)
{
A_star_queue nodes; // The priority queue & hash table.
int max_cost = client->estimate_cost(start, goal);
// Create start node.
nodes.add(new Search_node(start, 0, max_cost, 0));
// Figure when to give up.
max_cost = client->get_max_cost(max_cost);
Search_node *node; // Try 'best' node each iteration.
while ((node = nodes.pop()) != 0)
{
if (tracing)
cout << "Goal: (" << goal.tx << ", " << goal.ty <<
"), Node: (" << node->get_tile().tx << ", " <<
node->get_tile().ty << ")" << endl;
Tile_coord curtile = node->get_tile();
if (client->at_goal(curtile, goal))
// Success.
return node->create_path(pathlen);
// Go through surrounding tiles.
Neighbor_iterator get_next(curtile);
Tile_coord ntile(0, 0, 0);
while (get_next(ntile))
{ // Get cost to next tile.
int step_cost = client->get_step_cost(curtile, ntile);
// Blocked?
if (step_cost == -1)
continue;
// Get cost from start to ntile.
int new_cost = node->get_start_cost() + step_cost;
// See if next tile already seen.
Search_node *next = nodes.find(ntile);
// Already there, and cheaper?
if (next && next->get_start_cost() <= new_cost)
continue;
int new_goal_cost = client->estimate_cost(ntile, goal);
// Skip nodes too far away.
if (new_cost + new_goal_cost >= max_cost)
continue;
if (!next) // Create if necessary.
{
next = new Search_node(ntile, new_cost,
new_goal_cost, node);
nodes.add(next);
}
else
{ // It's going to move.
nodes.remove_from_open(next);
next->update(new_cost, new_goal_cost, node);
nodes.add_back(next);
}
}
}
pathlen = 0; // Failed if here.
return 0;
}
|