1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
# Copyright (c) 2025, Manfred Moitzi
# License: MIT License
from __future__ import annotations
from typing import Sequence
import random
import math
from pathlib import Path
from time import perf_counter
import ezdxf
from ezdxf.layouts import Modelspace
from ezdxf.render import forms
from ezdxf.math import Vec2, is_point_in_polygon_2d
from ezdxf import edgeminer as em
from ezdxf import edgesmith as es
CWD = Path(__file__).parent
OUTBOX = Path("~/Desktop/Outbox").expanduser()
def circle(count: int, radius: float) -> list[em.Edge]:
vertices = list(forms.circle(count, radius, close=True))
return [em.make_edge(a, b) for a, b in zip(vertices, vertices[1:])]
def with_fringes(edges: list[em.Edge], count: int, length: float) -> list[em.Edge]:
fringes: list[em.Edge] = []
for _ in range(count):
edge = random.choice(edges)
start = edge.end
fringe = Vec2.from_angle(random.random() * math.tau, length=length)
fringes.append(em.make_edge(start, start + fringe))
return edges + fringes
def mark_edges(msp: Modelspace, edges: Sequence[em.Edge]):
radius = 0.1
for edge in edges:
if edge.is_reverse:
dxfattribs = {"color": 1}
else:
dxfattribs = {"color": 3}
msp.add_circle(edge.start, radius, dxfattribs=dxfattribs)
msp.add_circle(edge.end, radius * 2, dxfattribs=dxfattribs)
def grid(size: tuple[int, int], length: float) -> list[em.Edge]:
edges: list[em.Edge] = []
m, n = size
for row in range(m + 1):
y = row * length
for col in range(n + 1):
x = col * length
if col < n:
edges.append(em.make_edge((x, y), (x + length, y)))
if row < m:
edges.append(em.make_edge((x, y), (x, y + length)))
return edges
def open_grid(size: tuple[int, int], length: float) -> list[em.Edge]:
edges: list[em.Edge] = []
m, n = size
for row in range(m):
y = row * length
for col in range(n):
x = col * length
if row > 0:
edges.append(em.make_edge((x, y), (x + length, y)))
if col > 0:
edges.append(em.make_edge((x, y), (x, y + length)))
return edges
def square(start: Vec2, length: float) -> Sequence[em.Edge]:
p1 = start + (length, 0)
p2 = start + (length, length)
p3 = start + (0, length)
return (
em.make_edge(start, p1),
em.make_edge(p1, p2),
em.make_edge(p2, p3),
em.make_edge(p3, start),
)
def grid_of_squares(size: tuple[int, int], length: float) -> list[em.Edge]:
edges: list[em.Edge] = []
m, n = size
for row in range(m):
y = row * length
for col in range(n):
x = col * length
edges.extend(square(Vec2(x, y), length))
return edges
def grid_of_jiggled_squares(size: tuple[int, int], length: float) -> list[em.Edge]:
edges: list[em.Edge] = []
m, n = size
for row in range(m):
y = row * length
for col in range(n):
x = col * length
jiggle = Vec2.from_angle(
random.random() * math.tau, length=length * random.random() / 10.0
)
edges.extend(square(Vec2(x, y) + jiggle, length))
return edges
def load(filename: str) -> list[em.Edge]:
doc = ezdxf.readfile(CWD / filename)
msp = doc.modelspace()
edges = list(es.edges_from_entities_2d(msp))
print(f"found {len(edges)} edges in '{filename}'")
return edges
def export_chains(
filename: str, chains: Sequence[Sequence[em.Edge]], gap_tol=em.GAP_TOL
):
doc = ezdxf.new()
msp = doc.modelspace()
for index, chain in enumerate(chains):
is_loop = em.is_loop_fast(chain, gap_tol=gap_tol)
layer = f"L{index}" if is_loop else f"C{index}"
color = (index % 6) + 1
msp.add_lwpolyline(
es.chain_vertices(chain),
close=is_loop,
dxfattribs={"layer": layer, "color": color},
)
try:
doc.saveas(OUTBOX / filename)
print(f"'{filename}' exported")
except IOError as e:
print(f"\n****** IOERROR *****\n{str(e)}\n****** IOERROR *****")
def export_edges(filename: str, edges: Sequence[em.Edge]):
doc = ezdxf.new()
msp = doc.modelspace()
for index, edge in enumerate(edges):
color = (index % 6) + 1
msp.add_line(edge.start, edge.end, dxfattribs={"layer": "EDGE", "color": color})
try:
doc.saveas(OUTBOX / filename)
print(f"'{filename}' exported")
except IOError as e:
print(f"\n****** IOERROR *****\n{str(e)}\n****** IOERROR *****")
def find_consecutive_edges(edges: list[em.Edge]):
t0 = perf_counter()
seq_edges = em.find_sequential_chain(edges)
t1 = perf_counter()
print(
f"sequential search found {len(seq_edges)} connected edges in {t1-t0:.4f} seconds"
)
print(f"is loop: {em.is_loop(seq_edges)}\n")
deposit = em.Deposit(edges)
t0 = perf_counter()
chains = em.find_all_simple_chains(deposit)
t1 = perf_counter()
print(f"find_all_chains() found {len(chains)} chain(s) in {t1-t0:.4f} seconds")
for index, chain in enumerate(chains):
is_loop = em.is_loop(chain)
print(f"{index+1}. chain has {len(chain)} edges, is loop: {is_loop}")
print("\nsearching first loop with backtracking in modelspace order...")
t0 = perf_counter()
loop = em.find_loop(deposit)
t1 = perf_counter()
print(f"found first loop with {len(loop)} edges in {t1-t0:.2f} seconds\n")
print("shuffling edges...\n")
random.shuffle(edges)
deposit = em.Deposit(edges)
print("searching first loop with backtracking in random order...")
t0 = perf_counter()
loop = em.find_loop(deposit)
t1 = perf_counter()
print(f"found first loop with {len(loop)} edges in {t1-t0:.2f} seconds\n")
def find_all_chains(edges: list[em.Edge], name: str):
# sequential searches are fast and work well for ordered entities
print("find_all_chains_sequential(): ordered")
t0 = perf_counter()
chains = list(em.find_all_sequential_chains(edges))
t1 = perf_counter()
print(f"found {len(chains)} chains in {t1-t0:.4f} seconds")
export_chains(name + "_sequential.dxf", chains)
deposit = em.Deposit(edges)
print("\nfind_all_chains(): ordered")
t0 = perf_counter()
chains = list(em.find_all_simple_chains(deposit))
t1 = perf_counter()
print(f"found {len(chains)} chains in {t1-t0:.4f} seconds")
export_chains(name + "_backtracking.dxf", chains)
# sequential searches fall apart as soon the entities are not ordered
print("\nshuffling edges...\n")
random.shuffle(edges)
deposit = em.Deposit(edges)
print("find_all_chains_sequential(): shuffled")
t0 = perf_counter()
chains = list(em.find_all_sequential_chains(edges))
t1 = perf_counter()
print(f"found {len(chains)} chains in {t1-t0:.4f} seconds")
export_chains(name + "_shuffled_sequential.dxf", chains)
print("\nfind_all_simple_chains(): shuffled")
t0 = perf_counter()
chains = list(em.find_all_simple_chains(deposit))
t1 = perf_counter()
print(f"found {len(chains)} chains in {t1-t0:.4f} seconds")
export_chains(name + "_shuffled_backtracking.dxf", chains)
def find_all_loops(edges: Sequence[em.Edge], export_dxf):
print("\nfind_all_loops():")
gap_tol = 1e-4
deposit = em.Deposit(edges, gap_tol=gap_tol)
t0 = perf_counter()
try:
loops = em.find_all_loops(deposit, timeout=10)
except em.TimeoutError as err:
print(str(err))
loops = err.solutions
t1 = perf_counter()
print(f"found {len(loops)} loops in {t1-t0:.4f} seconds")
unique_loops = list(em.unique_chains(loops))
print(f"... {len(unique_loops)} are unique loops")
export_chains(export_dxf, unique_loops, gap_tol)
def find_all_squares_sequential(edges: Sequence[em.Edge], export_dxf):
print("\nfind_all_sequential():")
t0 = perf_counter()
loops = list(em.find_all_sequential_chains(edges))
t1 = perf_counter()
found = sum(em.is_loop(l) for l in loops)
print(f"found {found} loops in {t1-t0:.4f} seconds")
export_chains(export_dxf, loops)
def find_open_chains(edges: Sequence[em.Edge], export_dxf):
print("\nfind_all_open_chains():")
deposit = em.Deposit(edges)
t0 = perf_counter()
try:
chains = em.find_all_open_chains(deposit, timeout=10)
except em.TimeoutError as err:
print(str(err))
chains = err.solutions
t1 = perf_counter()
print(f"found {len(chains)} open chains in {t1-t0:.4f} seconds")
unique_chains = list(em.unique_chains(chains))
print(f"... {len(unique_chains)} are unique open chains")
export_chains(export_dxf, unique_chains)
def chain_type(edges: Sequence[em.Edge]) -> str:
return "loop" if em.is_loop(edges) else "open chain"
def export_loops(filename: str, loops: list[Sequence[em.Edge]]):
doc = ezdxf.new()
msp = doc.modelspace()
index = 0
for loop in loops:
index += 1
layer = f"LOOP_{index}"
msp.add_lwpolyline(
es.chain_vertices(list(em.flatten(loop))),
dxfattribs={"layer": layer, "color": (index % 6) + 1},
)
try:
doc.saveas(OUTBOX / filename)
print(f"'{filename}' exported")
except IOError as e:
print(f"\n****** IOERROR *****\n{str(e)}\n****** IOERROR *****")
def inside_checker(point: Vec2):
def is_inside(edges: Sequence[em.Edge]) -> bool:
if len(edges) < 3:
return False
vertices = Vec2.list([e.start for e in edges])
return is_point_in_polygon_2d(point, vertices) >= 0
return is_inside
def pack_simple_chains(
deposit: em.Deposit,
) -> tuple[list[Sequence[em.Edge]], list[em.Edge]]:
chains = em.find_all_simple_chains(deposit)
if not chains:
return [], []
gap_tol = deposit.gap_tol
loops: list[Sequence[em.Edge]] = []
packed_edges: list[em.Edge] = []
for chain in chains:
if len(chain) > 1:
if em.is_loop_fast(chain, gap_tol=gap_tol):
# these loops have no ambiguities (junctions)
loops.append(chain)
else:
packed_edges.append(em.wrap_simple_chain(chain, gap_tol=gap_tol))
else:
packed_edges.append(chain[0])
return loops, packed_edges
def find_loops_by_edge(deposit: em.Deposit):
print("pick_near_loop():")
t0 = perf_counter()
loops, packed_edges = pack_simple_chains(deposit)
deposit = em.Deposit(packed_edges, gap_tol=deposit.gap_tol)
print(f"found {len(loops)} simple loops.")
print(f"remaining packed edges {len(packed_edges)}.")
print(deposit.degree_counter())
todo = set(packed_edges)
while todo:
start_edge = todo.pop()
loop = em.find_loop_by_edge(deposit, start_edge, clockwise=False)
if loop:
loops.append(loop)
todo -= set(loop)
print(f"found {len(loops)} loops in {perf_counter() - t0:.2f} seconds")
export_loops("find_loops_by_edge.dxf", loops)
# simple geometry, no ambiguity, no junctions
FILE_1 = "1_polylines.dxf"
# one same as FILE_1 but with added lines to create ambiguity
FILE_2 = "2_polylines.dxf"
# one big loop with 10052 edges, precise drawing
FILE_3 = "3_us_main.dxf"
# world map with one junction, many design inaccuracies
FILE_4 = "4_world.dxf"
# us state borders, congruent lines at common borders between states,
# many design inaccuracies
FILE_5 = "5_us_states.dxf"
def main():
circle_with_fringes = with_fringes(circle(10_000, 300), count=100, length=10)
find_all_chains(circle_with_fringes, name="find_all_chains")
find_all_loops(circle_with_fringes, "find_circle_with_backtracking.dxf")
grid_of_edges = grid((5, 3), length=10)
find_all_loops(grid_of_edges, "find_all_loops_in_grid_with_backtracking.dxf")
squares = grid_of_squares((20, 20), length=10)
random.shuffle(squares)
find_all_squares_sequential(squares, "find_all_squares_sequential.dxf")
squares = grid_of_jiggled_squares((20, 20), length=10)
random.shuffle(squares)
find_all_loops(squares, "find_all_jiggled_squares_with_backtracking.dxf")
print(f"degree counter for {FILE_3}: {em.Deposit(load(FILE_3)).degree_counter()}")
edges = open_grid(size=(3, 3), length=10)
random.shuffle(edges)
# export_edges("open_grid_10x10.dxf", edges=edges)
edges = open_grid(size=(3, 3), length=10)
random.shuffle(edges)
find_open_chains(edges, "find_open_chains_shuffled_backtracking.dxf")
deposit = em.Deposit(load(FILE_5), gap_tol=0.001)
edges = em.filter_coincident_edges(deposit, eq_fn=em.line_checker(0.001))
print(f"{len(edges)} edges are non-congruent edges")
deposit = em.Deposit(edges)
print(deposit.degree_counter())
find_loops_by_edge(deposit)
if __name__ == "__main__":
main()
|