File: np_bezier.py

package info (click to toggle)
ezdxf 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 104,528 kB
  • sloc: python: 182,341; makefile: 116; lisp: 20; ansic: 4
file content (153 lines) | stat: -rw-r--r-- 4,754 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2024, Manfred Moitzi
# License: MIT License
from __future__ import annotations
from typing import Sequence, Iterable, Iterator
import time

import numpy as np
from ezdxf.math import Bezier3P, Vec3, UVec, Bezier4P


class NumpyQuadraticBezier:
    def __init__(self, control_points: Iterable[UVec]) -> None:
        cpts = np.array(Vec3.list(control_points), dtype=np.double)
        assert cpts.shape[0] == 3
        # first control point is (0, 0, 0)
        offset = cpts[0].copy()
        cpts -= offset
        self._cpts = cpts
        self._offset = offset

    def points(self, params: Sequence[float]) -> Iterator[Vec3]:
        # 1st control point is always (0, 0, 0) => a = 0
        t = np.array(params, dtype=np.double)
        b = t * 2.0 * (1.0 - t)
        c = t * t
        return self._eval(Vec3(self._offset), b, c)

    def tangents(self, params: Sequence[float]) -> Iterator[Vec3]:
        # 1st control point is always (0, 0, 0) => a = 0
        t = np.array(params, dtype=np.double)
        b = t * -4.0 + 2.0
        c = t * 2.0
        return self._eval(Vec3(), b, c)

    def _eval(self, offset: Vec3, b, c) -> Iterator[Vec3]:
        _, cp1, cp2 = self._cpts
        x = b * cp1[0] + c * cp2[0]
        y = b * cp1[1] + c * cp2[1]
        z = b * cp1[2] + c * cp2[2]
        return (offset + xyz for xyz in np.column_stack((x, y, z)))


class NumpyCubicBezier:
    def __init__(self, control_points: Iterable[UVec]) -> None:
        cpts = np.array(Vec3.list(control_points), dtype=np.double)
        assert cpts.shape[0] == 4
        # first control point is (0, 0, 0)
        offset = cpts[0].copy()
        cpts -= offset
        self._cpts = cpts
        self._offset = offset

    def points(self, params: Sequence[float]) -> Iterator[Vec3]:
        # 1st control point is always (0, 0, 0) => a = 0
        t = np.array(params, dtype=np.double)
        t2 = t * t
        _1_minus_t = 1.0 - t
        _1_minus_t_square = _1_minus_t * _1_minus_t
        b = 3.0 * _1_minus_t_square * t
        c = 3.0 * _1_minus_t * t2
        d = t2 * t
        return self._eval(Vec3(self._offset), b, c, d)

    def tangents(self, params: Sequence[float]) -> Iterator[Vec3]:
        # 1st control point is always (0, 0, 0) => a = 0
        t = np.array(params, dtype=np.double)
        _3t = t * 3.0
        d = t * _3t
        b = 3.0 * (1.0 - 4.0 * t + d)
        c = _3t * (2.0 - _3t)
        return self._eval(Vec3(), b, c, d)

    def _eval(self, offset: Vec3, b, c, d) -> Iterator[Vec3]:
        _, cp1, cp2, cp3 = self._cpts
        x = b * cp1[0] + c * cp2[0] + d * cp3[0]
        y = b * cp1[1] + c * cp2[1] + d * cp3[1]
        z = b * cp1[2] + c * cp2[2] + d * cp3[2]
        return (offset + xyz for xyz in np.column_stack((x, y, z)))


def compare_quad_curves():
    print("\nQuadratic Bèzier Curve")
    cpts = [(1, 2, 3), (4, 3, 1), (5, 6, 7)]
    c0 = NumpyQuadraticBezier(cpts)
    c1 = Bezier3P(cpts)
    execute(c0, c1)


def compare_cubic_curves():
    print("\nCubic Bèzier Curve")
    cpts = [(1, 2, 3), (4, 3, 1), (5, 6, 7), (3, 4, 8)]
    c0 = NumpyCubicBezier(cpts)
    c1 = Bezier4P(cpts)
    execute(c0, c1)


def execute(c0, c1):
    params = [0.5, 0.6, 0.7]
    print("Points Calculation")
    print("Numpy:   ", list(c0.points(params)))
    print("Cython:  ", [c1.point(t) for t in params])

    print("\n1st Derivative Calculation")
    print("Numpy:  ", list(c0.tangents(params)))
    print("Cython: ", [c1.tangent(t) for t in params])


def profile():
    print("\nQuadratic Bèzier Curve")
    cpts = [(1, 2, 3), (4, 3, 1), (5, 6, 7)]
    curve = NumpyQuadraticBezier(cpts)
    params = np.linspace(0.1, 0.9, 100)
    count = 10_000

    t0 = time.perf_counter()
    profile_numpy(count, curve, params)
    print(f"Numpy:  {time.perf_counter() - t0}")

    curve = Bezier3P(cpts)
    t0 = time.perf_counter()
    profile_cython(count, curve, params)
    print(f"Cython: {time.perf_counter() - t0}")

    print("\nCubic Bèzier Curve")
    cpts = [(1, 2, 3), (4, 3, 1), (5, 6, 7), (3, 4, 8)]
    curve = NumpyCubicBezier(cpts)

    t0 = time.perf_counter()
    profile_numpy(count, curve, params)
    print(f"Numpy:  {time.perf_counter() - t0}")

    curve = Bezier4P(cpts)
    t0 = time.perf_counter()
    profile_cython(count, curve, params)
    print(f"Cython: {time.perf_counter() - t0}")


def profile_numpy(count, curve, params):
    for _ in range(count):
        list(curve.points(params))
        list(curve.tangents(params))


def profile_cython(count, curve, params):
    for _ in range(count):
        [curve.point(t) for t in params]
        [curve.tangent(t) for t in params]


if __name__ == "__main__":
    compare_quad_curves()
    compare_cubic_curves()
    profile()