1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
# Copyright (c) 2022, Manfred Moitzi
# License: MIT License
from typing import cast
import math
import random
import os
import time
import sys
import argparse
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
import ezdxf.addons.binpacking as bp
import ezdxf.addons.genetic_algorithm as ga
SEED = 47856535
def make_sample(n: int, max_width: float, max_height: float, max_depth: float):
for _ in range(n):
yield (
random.random() * max_width,
random.random() * max_height,
random.random() * max_depth,
)
def make_flat_packer(items) -> bp.FlatPacker:
packer = bp.FlatPacker()
for index, (w, h) in enumerate(items):
packer.add_item(str(index), w, h)
return packer
def make_3d_packer(items) -> bp.Packer:
packer = bp.Packer()
for index, (w, h, d) in enumerate(items):
packer.add_item(str(index), w, h, d)
return packer
def setup_flat_packer(n: int) -> bp.FlatPacker:
items = make_sample(n, 20, 20, 20)
packer = make_flat_packer(
((round(w) + 1, round(h) + 1) for w, h, d in items)
)
area = packer.get_unfitted_volume()
w = round(math.sqrt(area) / 2.0)
h = w * 1.60
packer.add_bin("bin", w, h)
return packer
def setup_3d_packer(n: int) -> bp.Packer:
items = make_sample(n, 20, 20, 20)
packer = make_3d_packer(
((round(w) + 1, round(h) + 1, round(d) + 1) for w, h, d in items)
)
volume = packer.get_unfitted_volume()
s = round(math.pow(volume, 1.0 / 3.1))
packer.add_bin("bin", s, s, s)
return packer
def print_result(p0: bp.AbstractPacker, t: float):
box = p0.bins[0]
print(
f"Packed {len(box.items)} items in {t:.3f}s, "
f"ratio: {p0.get_fill_ratio():.3f}"
)
def run_bigger_first(packer: bp.AbstractPacker):
print("\nBigger first strategy:")
p0 = packer.copy()
strategy = bp.PickStrategy.BIGGER_FIRST
t0 = time.perf_counter()
p0.pack(strategy)
t1 = time.perf_counter()
print_result(p0, t1 - t0)
def run_shuffle(packer: bp.AbstractPacker, shuffle_count: int):
print("\nShuffle strategy:")
n_shuffle = shuffle_count
t0 = time.perf_counter()
p0 = bp.shuffle_pack(packer, n_shuffle)
t1 = time.perf_counter()
print(f"Shuffle {n_shuffle}x, best result:")
print_result(p0, t1 - t0)
def make_subset_optimizer(
packer: bp.AbstractPacker, generations: int, dna_count: int
):
evaluator = bp.SubSetEvaluator(packer)
optimizer = ga.GeneticOptimizer(evaluator, max_generations=generations)
optimizer.name = "pack item subset"
optimizer.add_candidates(ga.BitDNA.n_random(dna_count, len(packer.items)))
return optimizer
def run(optimizer: ga.GeneticOptimizer):
def feedback(optimizer: ga.GeneticOptimizer):
print(
f"gen: {optimizer.generation:4}, "
f"stag: {optimizer.stagnation:4}, "
f"fitness: {optimizer.best_fitness:.3f}"
)
return False
print(
f"\nGenetic algorithm search: {optimizer.name}\n"
f"max generations={optimizer.max_generations}, DNA count={optimizer.count}"
)
optimizer.execute(feedback, interval=3.0)
print(
f"GeneticOptimizer: {optimizer.generation} generations x {optimizer.count} "
f"DNA strands, best result:"
)
evaluator = cast(bp.SubSetEvaluator, optimizer.evaluator)
best_packer = evaluator.run_packer(optimizer.best_dna)
print_result(best_packer, optimizer.runtime)
def show_log(log: ga.Log):
x = []
y = []
avg = []
for index, entry in enumerate(log.entries, start=1):
x.append(index)
y.append(entry.fitness)
avg.append(entry.avg_fitness)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.plot(x, avg)
ax.set(
xlabel="generation",
ylabel="fitness",
title="Strategy: pack item subset",
)
ax.grid()
plt.show()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-g",
"--generations",
type=int,
default=200,
help="generation count",
)
parser.add_argument(
"-d",
"--dna",
type=int,
default=50,
help="count of DNA strands",
)
parser.add_argument(
"-i",
"--items",
type=int,
default=50,
help="items count",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=SEED,
help="random generator seed",
)
parser.add_argument(
"-v",
"--view",
action="store_true",
default=False,
help="view logged data",
)
return parser.parse_args()
DATA_LOG = "binpacking.json"
def main():
args = parse_args()
if args.view and plt and os.path.exists(DATA_LOG):
log = ga.Log.load(DATA_LOG)
show_log(log)
sys.exit()
random.seed(args.seed)
packer = setup_3d_packer(args.items)
# packer = setup_flat_packer(50)
print(packer.bins[0])
print(f"Total item count: {len(packer.items)}")
print(f"Total item volume: {packer.get_unfitted_volume():.3f}")
print(f"Random Seed: {args.seed}")
run_bigger_first(packer)
optimizer = make_subset_optimizer(packer, args.generations, args.dna)
run(optimizer)
optimizer.log.dump(DATA_LOG)
if plt is not None:
show_log(optimizer.log)
if __name__ == "__main__":
main()
|