1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
# Copyright (c) 2020-2024, Manfred Moitzi
# License: MIT License
import sys
import time
from datetime import datetime
from pathlib import Path
import numpy as np
from ezdxf.acc import USE_C_EXT
from ezdxf.version import __version__
# Python implementations:
from ezdxf.math._bspline import Basis, Evaluator
if USE_C_EXT is False:
print("C-extension disabled or not available. (pypy3?)")
print("Cython implementation == Python implementation.")
CBasis = Basis
CEvaluator = Evaluator
else:
# Cython implementations:
from ezdxf.acc.bspline import Basis as CBasis, Evaluator as CEvaluator
from ezdxf.render import random_3d_path
from ezdxf.math import fit_points_to_cad_cv
SPLINE_COUNT = 20
POINT_COUNT = 20
splines = [
fit_points_to_cad_cv(random_3d_path(POINT_COUNT))
for _ in range(SPLINE_COUNT)
]
class PySpline:
def __init__(self, bspline, weights=None):
self.basis = Basis(
bspline.knots(), bspline.order, bspline.count, weights
)
self.evaluator = Evaluator(self.basis, bspline.control_points)
def point(self, u):
return self.evaluator.point(u)
def points(self, t):
return self.evaluator.points(t)
def derivative(self, u, n):
return self.evaluator.derivative(u, n)
def derivatives(self, t, n):
return self.evaluator.derivatives(t, n)
class CySpline(PySpline):
def __init__(self, bspline, weights=None):
self.basis = CBasis(
bspline.knots(), bspline.order, bspline.count, weights
)
self.evaluator = CEvaluator(self.basis, bspline.control_points)
def open_log(name: str):
parent = Path(__file__).parent
p = parent / "logs" / Path(name + ".csv")
if not p.exists():
with open(p, mode="wt") as fp:
fp.write(
'"timestamp"; "pytime"; "cytime"; '
'"python_version"; "ezdxf_version"\n'
)
log_file = open(p, mode="at")
return log_file
def log(name: str, pytime: float, cytime: float):
log_file = open_log(name)
timestamp = datetime.now().isoformat()
py_version = sys.version.replace("\n", " ")
log_file.write(
f'{timestamp}; {pytime}; {cytime}; "{py_version}"; "{__version__}"\n'
)
log_file.close()
def bspline_points(cls, count):
for curve in splines:
spline = cls(curve)
for u in np.linspace(0, spline.basis.max_t, count):
spline.point(u)
def bspline_multi_points(cls, count):
for curve in splines:
spline = cls(curve)
list(spline.points(np.linspace(0, spline.basis.max_t, count)))
def bspline_derivative(cls, count):
for curve in splines:
spline = cls(curve)
for u in np.linspace(0, spline.basis.max_t, count):
spline.derivative(u, 1)
def bspline_multi_derivative(cls, count):
for curve in splines:
spline = cls(curve)
list(spline.derivatives(np.linspace(0, spline.basis.max_t, count), 1))
def bspline_points_rational(cls, count):
for curve in splines:
weights = [1.0] * curve.count
spline = cls(curve, weights)
for u in np.linspace(0, spline.basis.max_t, count):
spline.point(u)
def profile1(func, *args) -> float:
t0 = time.perf_counter()
func(*args)
t1 = time.perf_counter()
return t1 - t0
def profile(text, func, pytype, cytype, *args):
pytime = profile1(func, pytype, *args)
cytime = profile1(func, cytype, *args)
ratio = pytime / cytime
print(f"Python - {text} {pytime:.3f}s")
print(f"Cython - {text} {cytime:.3f}s")
print(f"Ratio {ratio:.1f}x")
log(func.__name__, pytime, cytime)
POINT_COUNT_1 = 10_000
print(f"Profiling BSpline Python and Cython implementation:")
profile(
f"calc {POINT_COUNT_1}x single point for {SPLINE_COUNT} BSplines: ",
bspline_points,
PySpline,
CySpline,
POINT_COUNT_1,
)
profile(
f"calc {POINT_COUNT_1}x single point for {SPLINE_COUNT} rational BSplines: ",
bspline_points_rational,
PySpline,
CySpline,
POINT_COUNT_1,
)
profile(
f"calc {POINT_COUNT_1}x multi point for {SPLINE_COUNT} BSplines: ",
bspline_multi_points,
PySpline,
CySpline,
POINT_COUNT_1,
)
profile(
f"calc {POINT_COUNT_1}x single point & derivative for {SPLINE_COUNT} BSplines: ",
bspline_derivative,
PySpline,
CySpline,
POINT_COUNT_1,
)
profile(
f"calc {POINT_COUNT_1}x multi point & derivative for {SPLINE_COUNT} BSplines: ",
bspline_multi_derivative,
PySpline,
CySpline,
POINT_COUNT_1,
)
|