1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
# Copyright (c) 2021, Manfred Moitzi
# License: MIT License
import pytest
import math
from ezdxf.entities import Hatch
from ezdxf.render.forms import box
from ezdxf.math import Vec2, Vec3, Matrix44, arc_angle_span_deg
from ezdxf.path import make_path, have_close_control_vertices
@pytest.fixture()
def m44():
return Matrix44.chain(
Matrix44.z_rotate(math.pi / 2),
Matrix44.translate(1, 2, 0),
)
def test_polyline_path_transform_interface(m44):
hatch = Hatch.new()
vertices = list(box(1.0, 2.0))
path = hatch.paths.add_polyline_path(vertices)
hatch.transform(m44)
chk = m44.transform_vertices(vertices)
for v, c in zip(path.vertices, chk):
assert c.isclose(v)
def test_edge_path_transform_interface(m44):
hatch = Hatch.new()
path = hatch.paths.add_edge_path()
path.add_line((0, 0), (10, 0))
path.add_arc((10, 5), radius=5, start_angle=270, end_angle=450, ccw=1)
path.add_ellipse(
(5, 10), major_axis=(5, 0), ratio=0.2, start_angle=0, end_angle=180
)
spline = path.add_spline(
[(1, 1), (2, 2), (3, 3), (4, 4)], degree=3, periodic=1
)
# the following values do not represent a mathematically valid spline
spline.control_points = [(1, 1), (2, 2), (3, 3), (4, 4)]
spline.knot_values = [1, 2, 3, 4, 5, 6]
spline.weights = [4, 3, 2, 1]
spline.start_tangent = (10, 1)
spline.end_tangent = (2, 20)
chk = list(
m44.transform_vertices(
[
Vec3(0, 0),
Vec3(10, 0),
Vec3(10, 5),
Vec3(5, 10),
Vec3(1, 1),
Vec3(2, 2),
Vec3(3, 3),
Vec3(4, 4),
]
)
)
hatch.transform(m44)
line = path.edges[0]
assert chk[0].isclose(line.start)
assert chk[1].isclose(line.end)
arc = path.edges[1]
assert chk[2].isclose(arc.center)
ellipse = path.edges[2]
assert chk[3].isclose(ellipse.center)
spline = path.edges[3]
for c, v in zip(chk[4:], spline.control_points):
assert c.isclose(v)
for c, v in zip(chk[4:], spline.fit_points):
assert c.isclose(v)
assert m44.transform_direction((10, 1, 0)).isclose(spline.start_tangent)
assert m44.transform_direction((2, 20, 0)).isclose(spline.end_tangent)
@pytest.fixture(params=["arc", "ellipse"])
def closed_edge_hatch(request):
_hatch = Hatch.new()
_path = _hatch.paths.add_edge_path()
if request.param == "arc":
_path.add_arc((0, 0), radius=1, start_angle=0, end_angle=360, ccw=1)
elif request.param == "ellipse":
_path.add_ellipse(
(0, 0), major_axis=(5, 0), ratio=0.2, start_angle=0, end_angle=360
)
return _hatch
def test_full_circle_ellipse_edge_rotation(closed_edge_hatch):
edge = closed_edge_hatch.paths[0].edges[0]
assert arc_angle_span_deg(
edge.start_angle, edge.end_angle
) == pytest.approx(360)
closed_edge_hatch.transform(Matrix44.z_rotate(math.radians(30)))
edge2 = closed_edge_hatch.paths[0].edges[0]
assert arc_angle_span_deg(
edge2.start_angle, edge2.end_angle
) == pytest.approx(360)
def test_full_circle_edge_scaling():
_hatch = Hatch.new()
_path = _hatch.paths.add_edge_path()
_arc = _path.add_arc((0, 0), radius=1, start_angle=0, end_angle=360, ccw=1)
_hatch.transform(Matrix44.scale(0.5, 0.5, 0.5))
assert _arc.radius == pytest.approx(0.5)
def transformed_copy(entity, matrix):
_copy = entity.copy()
_copy.transform(matrix)
return _copy
@pytest.mark.parametrize(
"sx, sy, extrusion",
[
(-1, 1, (0, 0, -1)),
(1, -1, (0, 0, -1)),
(-1, -1, (0, 0, 1)),
],
ids=["mirror-x", "mirror-y", "mirror-xy"],
)
@pytest.mark.parametrize("kind", ["arc", "ellipse"])
def test_ocs_mirror_transformations_of_clockwise_oriented_curves(
sx,
sy,
extrusion,
kind,
):
hatch = Hatch()
edge_path = hatch.paths.add_edge_path()
if kind == "arc":
edge_path.add_arc((7, 0), 5, start_angle=0, end_angle=180, ccw=False)
elif kind == "ellipse":
edge_path.add_ellipse(
(7, 0), (5, 0), ratio=0.7, start_angle=0, end_angle=180, ccw=False
)
else:
pytest.fail(f"unknown kind: {kind}")
transformed_hatch = transformed_copy(hatch, Matrix44.scale(sx, sy, 1))
# This tests the current implementation of OCS transformations!
assert transformed_hatch.dxf.extrusion.isclose(extrusion)
assert (
transformed_hatch.paths[0].edges[0].ccw is False
), "ccw flag should not change"
@pytest.mark.parametrize(
"sx, sy",
[(-1, 1), (1, -1), (-1, -1)],
ids=["mirror-x", "mirror-y", "mirror-xy"],
)
@pytest.mark.parametrize("kind", ["arc", "ellipse"])
def test_wcs_mirror_transformations_of_clockwise_oriented_curves(sx, sy, kind):
hatch = Hatch()
edge_path = hatch.paths.add_edge_path()
# A closed loop is required to get a path!
edge_path.add_line((15, 5), (5, 5))
if kind == "arc":
edge_path.add_arc((10, 5), 5, start_angle=0, end_angle=180, ccw=False)
elif kind == "ellipse":
edge_path.add_ellipse(
(10, 5), (5, 0), ratio=0.7, start_angle=0, end_angle=180, ccw=False
)
else:
pytest.fail(f"unknown kind: {kind}")
src_path = make_path(hatch)
assert len(src_path) > 1, "expected non empty path"
m = Matrix44.scale(sx, sy, 1)
transformed_hatch = transformed_copy(hatch, m)
expected_path = src_path.transform(m)
path_of_transformed_hatch = make_path(transformed_hatch)
assert (
have_close_control_vertices(path_of_transformed_hatch, expected_path)
is True
)
@pytest.mark.parametrize(
"sx, sy",
[(-1, 1), (1, -1), (-1, -1)],
ids=["mirror-x", "mirror-y", "mirror-xy"],
)
def test_wcs_mirror_transformations_for_all_edge_types(
sx, sy, all_edge_types_hatch
):
hatch = all_edge_types_hatch
src_path = make_path(hatch)
assert len(src_path) > 1, "expected non empty path"
m = Matrix44.scale(sx, sy, 1)
transformed_hatch = transformed_copy(hatch, m)
expected_path = src_path.transform(m)
path_of_transformed_hatch = make_path(transformed_hatch)
assert (
have_close_control_vertices(path_of_transformed_hatch, expected_path)
is True
)
|