File: test_229c_hatch_transformations.py

package info (click to toggle)
ezdxf 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 104,528 kB
  • sloc: python: 182,341; makefile: 116; lisp: 20; ansic: 4
file content (210 lines) | stat: -rw-r--r-- 6,377 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) 2021, Manfred Moitzi
# License: MIT License
import pytest
import math

from ezdxf.entities import Hatch
from ezdxf.render.forms import box
from ezdxf.math import Vec2, Vec3, Matrix44, arc_angle_span_deg
from ezdxf.path import make_path, have_close_control_vertices


@pytest.fixture()
def m44():
    return Matrix44.chain(
        Matrix44.z_rotate(math.pi / 2),
        Matrix44.translate(1, 2, 0),
    )


def test_polyline_path_transform_interface(m44):
    hatch = Hatch.new()
    vertices = list(box(1.0, 2.0))
    path = hatch.paths.add_polyline_path(vertices)

    hatch.transform(m44)
    chk = m44.transform_vertices(vertices)
    for v, c in zip(path.vertices, chk):
        assert c.isclose(v)


def test_edge_path_transform_interface(m44):
    hatch = Hatch.new()
    path = hatch.paths.add_edge_path()
    path.add_line((0, 0), (10, 0))
    path.add_arc((10, 5), radius=5, start_angle=270, end_angle=450, ccw=1)
    path.add_ellipse(
        (5, 10), major_axis=(5, 0), ratio=0.2, start_angle=0, end_angle=180
    )
    spline = path.add_spline(
        [(1, 1), (2, 2), (3, 3), (4, 4)], degree=3, periodic=1
    )
    # the following values do not represent a mathematically valid spline
    spline.control_points = [(1, 1), (2, 2), (3, 3), (4, 4)]
    spline.knot_values = [1, 2, 3, 4, 5, 6]
    spline.weights = [4, 3, 2, 1]
    spline.start_tangent = (10, 1)
    spline.end_tangent = (2, 20)

    chk = list(
        m44.transform_vertices(
            [
                Vec3(0, 0),
                Vec3(10, 0),
                Vec3(10, 5),
                Vec3(5, 10),
                Vec3(1, 1),
                Vec3(2, 2),
                Vec3(3, 3),
                Vec3(4, 4),
            ]
        )
    )

    hatch.transform(m44)
    line = path.edges[0]
    assert chk[0].isclose(line.start)
    assert chk[1].isclose(line.end)
    arc = path.edges[1]
    assert chk[2].isclose(arc.center)
    ellipse = path.edges[2]
    assert chk[3].isclose(ellipse.center)
    spline = path.edges[3]
    for c, v in zip(chk[4:], spline.control_points):
        assert c.isclose(v)
    for c, v in zip(chk[4:], spline.fit_points):
        assert c.isclose(v)
    assert m44.transform_direction((10, 1, 0)).isclose(spline.start_tangent)
    assert m44.transform_direction((2, 20, 0)).isclose(spline.end_tangent)


@pytest.fixture(params=["arc", "ellipse"])
def closed_edge_hatch(request):
    _hatch = Hatch.new()
    _path = _hatch.paths.add_edge_path()
    if request.param == "arc":
        _path.add_arc((0, 0), radius=1, start_angle=0, end_angle=360, ccw=1)
    elif request.param == "ellipse":
        _path.add_ellipse(
            (0, 0), major_axis=(5, 0), ratio=0.2, start_angle=0, end_angle=360
        )
    return _hatch


def test_full_circle_ellipse_edge_rotation(closed_edge_hatch):
    edge = closed_edge_hatch.paths[0].edges[0]
    assert arc_angle_span_deg(
        edge.start_angle, edge.end_angle
    ) == pytest.approx(360)

    closed_edge_hatch.transform(Matrix44.z_rotate(math.radians(30)))
    edge2 = closed_edge_hatch.paths[0].edges[0]
    assert arc_angle_span_deg(
        edge2.start_angle, edge2.end_angle
    ) == pytest.approx(360)


def test_full_circle_edge_scaling():
    _hatch = Hatch.new()
    _path = _hatch.paths.add_edge_path()
    _arc = _path.add_arc((0, 0), radius=1, start_angle=0, end_angle=360, ccw=1)
    _hatch.transform(Matrix44.scale(0.5, 0.5, 0.5))
    assert _arc.radius == pytest.approx(0.5)


def transformed_copy(entity, matrix):
    _copy = entity.copy()
    _copy.transform(matrix)
    return _copy


@pytest.mark.parametrize(
    "sx, sy, extrusion",
    [
        (-1, 1, (0, 0, -1)),
        (1, -1, (0, 0, -1)),
        (-1, -1, (0, 0, 1)),
    ],
    ids=["mirror-x", "mirror-y", "mirror-xy"],
)
@pytest.mark.parametrize("kind", ["arc", "ellipse"])
def test_ocs_mirror_transformations_of_clockwise_oriented_curves(
    sx,
    sy,
    extrusion,
    kind,
):
    hatch = Hatch()
    edge_path = hatch.paths.add_edge_path()
    if kind == "arc":
        edge_path.add_arc((7, 0), 5, start_angle=0, end_angle=180, ccw=False)
    elif kind == "ellipse":
        edge_path.add_ellipse(
            (7, 0), (5, 0), ratio=0.7, start_angle=0, end_angle=180, ccw=False
        )
    else:
        pytest.fail(f"unknown kind: {kind}")

    transformed_hatch = transformed_copy(hatch, Matrix44.scale(sx, sy, 1))

    # This tests the current implementation of OCS transformations!
    assert transformed_hatch.dxf.extrusion.isclose(extrusion)
    assert (
        transformed_hatch.paths[0].edges[0].ccw is False
    ), "ccw flag should not change"


@pytest.mark.parametrize(
    "sx, sy",
    [(-1, 1), (1, -1), (-1, -1)],
    ids=["mirror-x", "mirror-y", "mirror-xy"],
)
@pytest.mark.parametrize("kind", ["arc", "ellipse"])
def test_wcs_mirror_transformations_of_clockwise_oriented_curves(sx, sy, kind):
    hatch = Hatch()
    edge_path = hatch.paths.add_edge_path()
    # A closed loop is required to get a path!
    edge_path.add_line((15, 5), (5, 5))
    if kind == "arc":
        edge_path.add_arc((10, 5), 5, start_angle=0, end_angle=180, ccw=False)
    elif kind == "ellipse":
        edge_path.add_ellipse(
            (10, 5), (5, 0), ratio=0.7, start_angle=0, end_angle=180, ccw=False
        )
    else:
        pytest.fail(f"unknown kind: {kind}")
    src_path = make_path(hatch)
    assert len(src_path) > 1, "expected non empty path"

    m = Matrix44.scale(sx, sy, 1)
    transformed_hatch = transformed_copy(hatch, m)

    expected_path = src_path.transform(m)
    path_of_transformed_hatch = make_path(transformed_hatch)
    assert (
        have_close_control_vertices(path_of_transformed_hatch, expected_path)
        is True
    )


@pytest.mark.parametrize(
    "sx, sy",
    [(-1, 1), (1, -1), (-1, -1)],
    ids=["mirror-x", "mirror-y", "mirror-xy"],
)
def test_wcs_mirror_transformations_for_all_edge_types(
    sx, sy, all_edge_types_hatch
):
    hatch = all_edge_types_hatch
    src_path = make_path(hatch)
    assert len(src_path) > 1, "expected non empty path"

    m = Matrix44.scale(sx, sy, 1)
    transformed_hatch = transformed_copy(hatch, m)

    expected_path = src_path.transform(m)
    path_of_transformed_hatch = make_path(transformed_hatch)
    assert (
        have_close_control_vertices(path_of_transformed_hatch, expected_path)
        is True
    )