File: test_539_npshapes.py

package info (click to toggle)
ezdxf 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 104,528 kB
  • sloc: python: 182,341; makefile: 116; lisp: 20; ansic: 4
file content (520 lines) | stat: -rw-r--r-- 17,251 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#  Copyright (c) 2023, Manfred Moitzi
#  License: MIT License

import pytest

from ezdxf.npshapes import NumpyPoints2d, NumpyPath2d, NumpyPoints3d
from ezdxf.math import Matrix44, BoundingBox2d, close_vectors, Vec2, Vec3
from ezdxf.path import Command, from_vertices, Path
from ezdxf.render import forms


class TestNumpyPoints2d:
    @pytest.fixture
    def points(self):
        return Vec2.list([(1, 2), (7, 4), (4, 7), (0, 1)])

    def test_conversion(self, points):
        pl = NumpyPoints2d(points)
        assert len(pl) == len(points)
        assert all(v0.isclose(v1) for v0, v1 in zip(pl.vertices(), points))

    def test_extents(self, points):
        pl = NumpyPoints2d(points)
        extmin, extmax = pl.extents()
        assert extmin.isclose((0, 1))
        assert extmax.isclose((7, 7))

    def test_transform_inplace(self, points):
        m = Matrix44.translate(7, 8, 0)
        t_pts = m.fast_2d_transform(points)
        pl = NumpyPoints2d(points)
        pl.transform_inplace(m)
        assert all(v0.isclose(v1) for v0, v1 in zip(pl.vertices(), t_pts))

    def test_to_tuples(self, points):
        pl = NumpyPoints2d(points)
        vertices = pl.to_tuples()
        assert isinstance(vertices, list)
        assert len(vertices) == len(points)
        assert isinstance(vertices[0], tuple)
        assert len(vertices[0]) == 2

    def test_to_list(self, points):
        pl = NumpyPoints2d(points)
        vertices = pl.to_list()
        assert isinstance(vertices, list)
        assert len(vertices) == len(points)
        assert isinstance(vertices[0], list)
        assert len(vertices[0]) == 2


class TestNumpyPoints3d:
    @pytest.fixture
    def points(self):
        return Vec3.list([(1, 2, 3), (7, 4, 3), (4, 7, 9), (0, 1, 3)])

    def test_conversion(self, points):
        pl = NumpyPoints3d(points)
        assert len(pl) == len(points)
        assert all(v0.isclose(v1) for v0, v1 in zip(pl.vertices(), points))

    def test_extents(self, points):
        pl = NumpyPoints3d(points)
        extmin, extmax = pl.extents()
        assert extmin.isclose((0, 1, 3))
        assert extmax.isclose((7, 7, 9))

    def test_transform_inplace(self, points):
        m = Matrix44.translate(7, 8, 0)
        t_pts = list(m.transform_vertices(points))
        pl = NumpyPoints3d(points)
        pl.transform_inplace(m)
        assert all(v0.isclose(v1) for v0, v1 in zip(pl.vertices(), t_pts))


class TestNumpyPath2d:
    @pytest.fixture
    def path(self):
        p = Path((1, 2))
        p.line_to((7, 4))
        p.curve3_to((4, 7), (0, 1))
        p.move_to((10, 0))
        p.curve4_to((15, 7), (13, 3), (14, 5))
        return p

    def test_clone(self, path):
        np_path = NumpyPath2d(path)
        clone_ = np_path.clone().to_path()
        assert clone_.control_vertices() == path.control_vertices()
        assert clone_.command_codes() == path.command_codes()

    def test_start_point(self, path):
        assert path.start.isclose((1, 2))

    def test_end_point(self, path):
        assert path.end.isclose((15, 7))

    def test_has_subpaths(self, path):
        np_path = NumpyPath2d(path)
        assert np_path.has_sub_paths is True

    def test_has_no_subpaths(self):
        np_path = NumpyPath2d(Path((1, 2)))
        assert np_path.has_sub_paths is False

    def test_to_path_2d(self, path):
        np_path = NumpyPath2d(path)
        assert len(np_path) == len(path)

        path = np_path.to_path()
        assert len(path) == 4
        assert path.start.isclose((1, 2))
        assert path.end.isclose((15, 7))

        cmds = path.commands()
        assert cmds[0].type == Command.LINE_TO
        assert cmds[0].end.isclose((7, 4))

        assert cmds[1].type == Command.CURVE3_TO
        assert cmds[1].end.isclose((4, 7))
        assert cmds[1].ctrl.isclose((0, 1))

        assert cmds[2].type == Command.MOVE_TO
        assert cmds[2].end.isclose((10, 0))

        assert cmds[3].type == Command.CURVE4_TO
        assert cmds[3].end.isclose((15, 7))
        assert cmds[3].ctrl1.isclose((13, 3))
        assert cmds[3].ctrl2.isclose((14, 5))

    def test_extents(self, path):
        np_path = NumpyPath2d(path)
        extmin, extmax = np_path.extents()
        box = BoundingBox2d(path.control_vertices())

        assert extmin.isclose(box.extmin)
        assert extmax.isclose(box.extmax)

    def test_transform(self, path):
        m = Matrix44.scale(2, 3, 1) @ Matrix44.translate(-2, 10, 0)
        np_path = NumpyPath2d(path)
        np_path.transform_inplace(m)
        assert all(
            v0.isclose(v1)
            for v0, v1 in zip(np_path.vertices(), path.transform(m).control_vertices())
        )

    def test_start_point_only_path(self):
        p = NumpyPath2d(Path((10, 20)))
        assert p.start.isclose((10, 20))
        # and back
        assert p.to_path().start.isclose((10, 20))

    def test_from_empty_path(self):
        p = NumpyPath2d(Path())
        assert len(p) == 0
        assert p.start == (0, 0)
        assert p.end == (0, 0)
        # and back
        assert p.to_path().start == (0, 0)  # default start point

    def test_create_empty_path_from_none(self):
        p = NumpyPath2d(None)
        assert len(p) == 0
        with pytest.raises(IndexError):
            assert p.start
        with pytest.raises(IndexError):
            assert p.end
        # and back
        assert p.to_path().start == (0, 0)  # default start point


@pytest.fixture
def first():
    p = Path()
    p.line_to((10, 0))
    return NumpyPath2d(p)


@pytest.fixture
def second():
    p = Path((10, 0))
    p.line_to((20, 0))
    return NumpyPath2d(p)


@pytest.fixture
def third():
    p = Path((20, 0))
    p.line_to((30, 0))
    return NumpyPath2d(p)


@pytest.fixture
def curve3():
    p = Path((0, 0))
    p.curve3_to((10, 0), (5, 3))
    return NumpyPath2d(p)


@pytest.fixture
def curve4():
    p = Path((10, 0))
    p.curve4_to((20, 0), (13, -3), (17, 3))
    return NumpyPath2d(p)


class TestNumpyPath2dExtend:
    def test_extend_empty_path(self, second):
        empty = NumpyPath2d(None)
        empty.extend([second])
        assert len(empty) == 1
        assert empty.start.isclose((10, 0))
        assert empty.end.isclose((20, 0))

    def test_extend_by_empty_path(self, first):
        first.extend([NumpyPath2d(None)])
        assert len(first) == 1
        assert first.start.isclose((0, 0))
        assert first.end.isclose((10, 0))

    def test_extend_by_empty_2d_path(self, first):
        empty = Path(Vec2(7, 7))  # has no drawing commands
        first.extend([NumpyPath2d(empty)])
        assert len(first) == 1
        assert first.start.isclose((0, 0))
        assert first.end.isclose((10, 0))

    def test_extend_by_empty_list(self, first):
        first.extend([])
        assert len(first) == 1
        assert first.start.isclose((0, 0))
        assert first.end.isclose((10, 0))

    def test_concatenate_adjacent_paths(self, first, second):
        base = NumpyPath2d.concatenate([first, second])
        assert base.command_codes() == [1, 1]
        assert base.start.isclose((0, 0))
        assert base.end.isclose((20, 0))

    def test_concatenate_separated_paths(self, first, third):
        base = NumpyPath2d.concatenate([first, third])
        assert base.has_sub_paths is True, "expected a MOVE_TO command"
        assert base.command_codes() == [1, 4, 1]
        vertices = base.vertices()
        assert len(vertices) == 4
        assert vertices[0].isclose((0, 0))  # start
        assert vertices[1].isclose((10, 0))  # line_to
        assert vertices[2].isclose((20, 0))  # move_to
        assert vertices[3].isclose((30, 0))  # line_to

    def test_concatenate_all_paths(self, first, second, third):
        base = NumpyPath2d.concatenate([first, second, third])
        assert base.command_codes() == [1, 1, 1]
        vertices = base.vertices()
        assert len(vertices) == 4
        assert vertices[0].isclose((0, 0))  # start
        assert vertices[1].isclose((10, 0))  # line_to
        assert vertices[2].isclose((20, 0))  # line_to
        assert vertices[3].isclose((30, 0))  # line_to

    def test_concatenate_curves(self, curve3, curve4):
        base = NumpyPath2d.concatenate([curve3, curve4])
        assert base.command_codes() == [2, 3]
        vertices = base.vertices()
        assert len(vertices) == 6
        assert vertices[0].isclose((0, 0))  # start
        assert vertices[1].isclose((5, 3))  # curve_3_to - ctrl
        assert vertices[2].isclose((10, 0))  # curve_3_to - end
        assert vertices[3].isclose((13, -3))  # curve_4_to - ctrl1
        assert vertices[4].isclose((17, 3))  # curve_4_to - ctrl2
        assert vertices[5].isclose((20, 0))  # curve_4_to - end

    def test_concatenate_empty_list_returns_empty_path(self):
        base = NumpyPath2d.concatenate([])
        assert base.command_codes() == []
        assert base.vertices() == []
        with pytest.raises(IndexError):
            base.start.isclose((0, 0))
        with pytest.raises(IndexError):
            base.end.isclose((0, 0))


class TestSubPaths:
    def test_empty_path(self):
        paths = NumpyPath2d(None).sub_paths()
        assert len(paths) == 0

    def test_single_path(self, first):
        paths = first.sub_paths()
        assert len(paths) == 1
        assert paths[0] is first

    def test_multipath_of_two(self, first, third):
        multi_path = NumpyPath2d.concatenate([first, third])
        paths = multi_path.sub_paths()
        assert len(paths) == 2
        for p in paths:
            assert p.command_codes() == [1]

        first, second = paths
        vertices = first.vertices()
        assert len(vertices) == 2
        assert vertices[0].isclose((0, 0))
        assert vertices[1].isclose((10, 0))

        vertices = second.vertices()
        assert len(vertices) == 2
        assert vertices[0].isclose((20, 0))
        assert vertices[1].isclose((30, 0))

    def test_multipath_with_curve3(self, first, curve3, third):
        multi_path = NumpyPath2d.concatenate([first, curve3, third])
        paths = multi_path.sub_paths()
        assert len(paths) == 3
        first, second, third = paths
        assert first.command_codes() == [1]
        assert second.command_codes() == [2]
        assert third.command_codes() == [1]

        vertices = first.vertices()
        assert len(vertices) == 2
        assert vertices[0].isclose((0, 0))
        assert vertices[1].isclose((10, 0))

        vertices = second.vertices()
        assert len(vertices) == 3
        assert vertices[0].isclose((0, 0))  # curve3_to, start
        assert vertices[1].isclose((5, 3))  # curve3_to, ctrl
        assert vertices[2].isclose((10, 0))  # curve3_to, end

        vertices = third.vertices()
        assert len(vertices) == 2
        assert vertices[0].isclose((20, 0))
        assert vertices[1].isclose((30, 0))

    def test_multipath_with_curve4(self, curve4, third, first):
        # curve4 and third are connected as a single path
        multi_path = NumpyPath2d.concatenate([curve4, third, first])
        paths = multi_path.sub_paths()
        assert len(paths) == 2
        first, second = paths
        assert first.command_codes() == [3, 1]
        assert second.command_codes() == [1]

        vertices = first.vertices()  # curve3 + third
        assert len(vertices) == 5
        assert vertices[0].isclose((10, 0))  # curve4_to, start
        assert vertices[1].isclose((13, -3))  # curve4_to, ctrl1
        assert vertices[2].isclose((17, 3))  # curve4_to, ctrl2
        assert vertices[3].isclose((20, 0))  # curve4_to, end
        assert vertices[4].isclose((30, 0))  # line_to

        vertices = second.vertices()
        assert len(vertices) == 2
        assert vertices[0].isclose((0, 0))
        assert vertices[1].isclose((10, 0))

    def test_sub_paths_are_reversible(self, first, third):
        multi_path = NumpyPath2d.concatenate([first, third])
        paths = multi_path.sub_paths()
        first, second = paths
        first.reverse()
        vertices = first.vertices()
        assert vertices[0].isclose((10, 0))
        assert vertices[1].isclose((0, 0))


def test_path_conversion_methods():
    source_path = from_vertices(forms.circle(32))
    p0 = Path((2, 0))
    p0.curve3_to((3, 0), (2.5, 1))
    source_path.extend_multi_path(p0)
    p0 = Path((3, 0))
    p0.curve4_to((4, 0), (3.3, -1), (3.7, 1))

    p0 = from_vertices(forms.translate(forms.circle(32)), (5, 0))
    source_path.extend_multi_path(p0)
    assert source_path.has_sub_paths is True
    assert source_path.has_curves is True
    assert source_path.has_lines is True

    converted_path = NumpyPath2d(source_path).to_path()
    assert converted_path.has_sub_paths is True
    assert converted_path.has_curves is True
    assert converted_path.has_lines is True

    assert source_path.start.isclose(converted_path.start)
    assert source_path.end.isclose(converted_path.end)

    assert source_path.command_codes() == converted_path.command_codes()
    cv0 = source_path.control_vertices()
    cv1 = converted_path.control_vertices()
    assert len(cv0) == len(cv1)
    for v0, v1 in zip(cv0, cv1):
        assert v0.isclose(v1)
    assert source_path._start_index == converted_path._start_index


@pytest.fixture(scope="module")
def p1():
    path = Path()
    path.line_to((2, 0))
    path.curve4_to((4, 0), (2, 1), (4, 1))  # end, ctrl1, ctrl2
    path.curve3_to((6, 0), (5, -1))  # end, ctrl
    return path


def test_flatten_path(p1):
    p2 = NumpyPath2d(p1)
    v1 = list(p1.flattening(0.01))
    v2 = list(p2.flattening(0.01))
    assert close_vectors(v1, v2)


class TestReversePath:
    def test_reversing_empty_path(self):
        p = NumpyPath2d(None)
        p.reverse()
        assert len(p) == 0

    def test_reversing_one_line(self):
        p = Path()
        p.line_to((1, 0))
        p2 = NumpyPath2d(p).reverse()
        vertices = p2.control_vertices()
        assert close_vectors(vertices, [(1, 0), (0, 0)])

    def test_reversing_one_curve3(self):
        p = Path()
        p.curve3_to((3, 0), (1.5, 1))
        p2 = NumpyPath2d(p).reverse()
        assert close_vectors(p2.control_vertices(), [(3, 0), (1.5, 1), (0, 0)])

    def test_reversing_one_curve4(self):
        p = Path()
        p.curve4_to((3, 0), (1, 1), (2, 1))
        p2 = NumpyPath2d(p).reverse()
        assert close_vectors(p2.control_vertices(), [(3, 0), (2, 1), (1, 1), (0, 0)])

    def test_reversing_path_ctrl_vertices(self, p1):
        p2 = NumpyPath2d(p1).reverse()
        assert close_vectors(
            p2.control_vertices(), reversed(list(p1.control_vertices()))
        )

    def test_reversing_flattened_path(self, p1):
        p2 = NumpyPath2d(p1)
        p2.reverse()
        v1 = list(p1.flattening(0.01))
        v2 = list(p2.flattening(0.01))
        assert close_vectors(v1, reversed(v2))

    def test_reversing_multi_path(self):
        p = Path()
        p.line_to((1, 0, 0))
        p.move_to((2, 0, 0))
        p.line_to((3, 0, 0))

        r = NumpyPath2d(p).reverse()
        assert r.has_sub_paths is True
        assert len(r) == 3
        assert r.command_codes() == [1, 4, 1]
        assert r.start == (3, 0, 0)
        assert r.end == (0, 0, 0)

    def test_reversing_multi_path_with_a_move_to_cmd_at_the_end(self):
        p = Path()
        p.line_to((1, 0, 0))
        p.move_to((2, 0, 0))
        # The last move_to will become the first move_to.
        # A move_to as first command just moves the start point.
        r = NumpyPath2d(p).reverse()
        assert len(r) == 1
        assert r.command_codes() == [1]
        assert r.start == (1, 0, 0)
        assert r.end == (0, 0, 0)
        assert r.has_sub_paths is False

    def test_has_clockwise_orientation(self, p1):
        p2 = NumpyPath2d(p1)
        assert p2.has_clockwise_orientation() is True

    def test_has_counter_clockwise_orientation(self, p1):
        p2 = NumpyPath2d(p1)
        assert p2.reverse().has_clockwise_orientation() is False

    def test_cw_and_ccw_orientation(self, p1):
        from ezdxf.math import has_clockwise_orientation

        p2 = NumpyPath2d(p1)
        assert has_clockwise_orientation(p2.clockwise().control_vertices()) is True
        assert (
            has_clockwise_orientation(p2.counter_clockwise().control_vertices())
            is False
        )


def test_clockwise_orientation_of_implicit_closed_path():
    p2 = NumpyPath2d(from_vertices([(0, 0), (10, 0), (10, 10), (0, 10)]))
    assert p2.has_clockwise_orientation() is False


def test_clockwise_orientation_of_explicit_closed_path():
    p2 = NumpyPath2d(from_vertices([(0, 0), (10, 0), (10, 10), (0, 10)], close=True))
    assert p2.has_clockwise_orientation() is False


def test_counter_clockwise_orientation_of_implicit_closed_path():
    p2 = NumpyPath2d(from_vertices([(0, 10), (10, 10), (10, 0), (0, 0)]))
    assert p2.has_clockwise_orientation() is True


def test_counter_clockwise_orientation_of_explicit_closed_path():
    p2 = NumpyPath2d(from_vertices([(0, 10), (10, 10), (10, 0), (0, 0)], close=True))
    assert p2.has_clockwise_orientation() is True


if __name__ == "__main__":
    pytest.main([__file__])