1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
# Copyright (c) 2024, Manfred Moitzi
# License: MIT License
from __future__ import annotations
from typing import Sequence
import pytest
from ezdxf import edgeminer as em
from ezdxf.math import Vec3, rtree
class TestBasicRequirements:
@pytest.fixture(params=[Vec3, em._Vertex], scope="class")
def abc(self, request):
cls = request.param
a = cls((1, 2, 3))
b = cls((1, 2, 3))
c = cls((1, 2, 3))
return a, b, c
def test_vec3_requirements(self, abc):
a, b, c = abc
# Same locations have unique identities.
# Maybe future me decides to return the same instance for same locations as
# optimization, because Vec3 is immutable!
assert a is not b
assert a is not c
assert b is not c
# equality is EXACT same location and vice versa
# floating point equality on bit-level!
assert a == b
assert a == c
assert b == c
# EXACT same location has same hash
assert hash(a) == hash(b)
assert hash(a) == hash(c)
assert hash(b) == hash(c)
def test_rtree_requirements(self, abc):
rt = rtree.RTree(abc)
assert len(rt) == 3, "expected multiple entries for the same location"
result = list(rt.points_in_sphere(Vec3(1, 2, 3), radius=0.1))
assert len(result) == 3, "expected multiple entries for the same location"
assert set([id(v) for v in abc]) == set(
[id(v) for v in result]
), "expected the identical instances"
class TestEdge:
def test_init(self):
edge = em.make_edge((0, 0), (1, 0))
assert edge.start == Vec3(0, 0)
assert edge.end == Vec3(1, 0)
assert edge.length == 1.0
assert edge.is_reverse is False
assert edge.payload is None
def test_edge_is_immutable(self):
edge = em.make_edge((0, 0), (1, 0))
with pytest.raises(AttributeError):
edge.id = 0
def test_identity(self):
edge0 = em.make_edge((0, 0), (1, 0))
edge1 = em.make_edge((0, 0), (1, 0))
assert edge0 == edge0
assert edge0 != edge1, "each edge should have an unique identity"
assert edge0 == edge0.reversed(), "reversed copies represent the same edge"
def test_reversed_copy(self):
edge = em.make_edge((0, 0), (1, 0))
clone = edge.reversed()
assert edge == clone
assert edge.id == clone.id
assert edge.start == clone.end
assert edge.end == clone.start
assert edge.length == clone.length
assert edge.is_reverse is (not clone.is_reverse)
assert edge.payload is clone.payload
def test_edge_can_be_used_in_sets(self):
A = em.make_edge((0, 0), (1, 0))
B = em.make_edge((1, 0), (1, 1))
C = em.make_edge((1, 1), (0, 1))
s1 = set([A, B])
s2 = set([C, B])
result = s1.intersection(s2)
assert len(result) == 1
assert B in result
class SimpleLoops:
# 0 1 2
# 1 +-C-+-G-+
# | | |
# D B F
# | | |
# 0 +-A-+-E-+
A = em.make_edge((0, 0), (1, 0), length=0.5, payload="A")
B = em.make_edge((1, 0), (1, 1), payload="B")
C = em.make_edge((1, 1), (0, 1), payload="C")
D = em.make_edge((0, 1), (0, 0), payload="D")
E = em.make_edge((1, 0), (2, 0), payload="E")
F = em.make_edge((2, 0), (2, 1), payload="F")
G = em.make_edge((2, 1), (1, 1), payload="G")
class TestEdgeDeposit(SimpleLoops):
# 0 1 2
# 1 +-C-+-G-+
# | | |
# D B F
# | | |
# 0 +-A-+-E-+
@pytest.fixture
def edges(self):
return [self.A, self.B, self.C, self.D, self.E, self.F, self.G]
def test_get_degree_of_vertex(self, edges: list[em.Edge]):
deposit = em.Deposit(edges)
assert deposit.degree((0, 0)) == 2
assert deposit.degree((1, 0)) == 3
assert deposit.degree((-1, -1)) == 0, "not in deposit"
def test_get_degree_of_vertices(self, edges: list[em.Edge]):
deposit = em.Deposit(edges)
assert deposit.degrees([(0, 0), (1, 0), (-1, -1)]) == (2, 3, 0)
assert deposit.degrees([]) == ()
def test_degree_counter(self, edges: list[em.Edge]):
deposit = em.Deposit(edges)
counter = deposit.degree_counter()
assert counter[1] == 0
assert counter[2] == 4
assert counter[3] == 2
assert deposit.max_degree == 3
def test_unique_vertices(self, edges: list[em.Edge]):
deposit = em.Deposit(edges)
assert len(deposit.unique_vertices()) == 6
def test_find_edges_linked_to_vertex_A_D(self):
deposit = em.Deposit([self.A, self.B, self.C, self.D])
edges = deposit.edges_linked_to(self.A.start)
ids = set(e.id for e in edges)
assert len(ids) == 2
assert self.A.id in ids
assert self.D.id in ids
def test_find_edges_linked_to_vertex_A_G(self, edges: list[em.Edge]):
deposit = em.Deposit(edges)
linked_edges = deposit.edges_linked_to(self.B.end)
ids = set(e.id for e in linked_edges)
assert len(ids) == 3
assert self.B.id in ids
assert self.C.id in ids
assert self.G.id in ids
def test_find_nearest_edge(self):
deposit = em.Deposit([self.A, self.B, self.C, self.D])
edge = deposit.find_nearest_edge((0.5, 0.6))
assert edge is self.C
def test_build_network_A_D(self):
deposit = em.Deposit([self.A, self.B, self.C, self.D])
# network of all edges connected directly or indirectly to A
network = deposit.find_network(self.A)
assert len(network) == 4
assert self.B in network
assert self.C in network
assert self.D in network
def test_solitary_edge_is_a_network(self):
deposit = em.Deposit([self.A, self.C])
network = deposit.find_network(self.A)
assert len(network) == 0
def test_build_network_A_G(self, edges: list[em.Edge]):
deposit = em.Deposit(edges)
# network of all edges connected directly or indirectly to B
network = deposit.find_network(self.B)
assert len(network) == 7
def test_build_all_networks(self, edges: list[em.Edge]):
deposit = em.Deposit(edges)
assert len(deposit.find_all_networks()) == 1
def test_build_all_disconnected_networks(self):
# 0 1 2 3
# 1 +-C-+ +-G-+
# | | | |
# D B H F
# | | | |
# 0 +-A-+ +-E-+
E = em.make_edge((2, 0), (3, 0), payload="E")
F = em.make_edge((3, 0), (3, 1), payload="F")
G = em.make_edge((3, 1), (2, 1), payload="G")
H = em.make_edge((2, 1), (2, 0), payload="H")
deposit = em.Deposit([self.A, self.B, self.C, self.D, E, F, G, H])
assert len(deposit.find_all_networks()) == 2
def test_build_all_networks_solitary_edges(self):
deposit = em.Deposit([self.A, self.C, self.F])
assert len(deposit.find_all_networks()) == 0, "a single edge is not a network"
def test_find_loose_ends(self):
deposit = em.Deposit([self.A, self.E, self.B, self.C, self.G])
edges = set(deposit.find_leafs())
assert len(edges) == 4
assert self.B not in edges
def test_single_edge_is_a_loose_ends(self):
deposit = em.Deposit([self.A])
edges = list(deposit.find_leafs())
assert len(edges) == 1
def test_loops_do_not_have_loose_ends(self):
deposit = em.Deposit([self.A, self.B, self.C, self.D])
edges = set(deposit.find_leafs())
assert len(edges) == 0
class TestLoop:
# +-C-+
# | |
# D B
# | |
# +-A-+
A = em.make_edge((0, 0), (1, 0))
B = em.make_edge((1, 0), (1, 1))
C = em.make_edge((1, 1), (0, 1))
D = em.make_edge((0, 1), (0, 0))
def test_loop_key(self):
loop1 = (self.A, self.B, self.C)
loop2 = (self.B, self.C, self.A) # rotated edges, same loop
assert em.loop_key(loop1) == em.loop_key(loop2)
def collect(chain: Sequence[em.Edge]):
return ",".join(e.payload for e in chain)
def ordered_edges(edges: Sequence[em.Edge], reverse=False):
"""Returns the loop edges in key order."""
edge_dict = {e.id: e for e in edges}
return (edge_dict[eid] for eid in em.loop_key(edges, reverse=reverse))
def collect_ordered(chain: Sequence[em.Edge]) -> str:
"""Returns the payload as strings in key order.
Key order:
Loop starts with the edge with the smallest id.
"""
if len(chain) == 0:
return ""
elif len(chain) == 1:
return chain[0].payload # type: ignore
return ",".join([e.payload for e in ordered_edges(chain)])
class TestFindSequential:
# 0 1 2
# 1 +-E-+-D-+
# | |
# F C
# | |
# 0 +-A-+-B-+
A = em.make_edge((0, 0), (1, 0), payload="A")
B = em.make_edge((1, 0), (2, 0), payload="B")
C = em.make_edge((2, 0), (2, 1), payload="C")
D = em.make_edge((2, 1), (1, 1), payload="D")
E = em.make_edge((1, 1), (0, 1), payload="E")
F = em.make_edge((0, 1), (0, 0), payload="F")
def test_is_forward_connected(self):
assert em.is_forward_connected(self.A, self.B) is True
assert em.is_forward_connected(self.A, self.F) is False
def test_find_sequential(self):
edges = [self.A, self.B, self.C, self.D, self.E, self.F]
result = em.find_sequential_chain(edges)
assert len(result) == 6
assert result[0] is self.A
assert result[-1] is self.F
class TestLoopFinderSimple(SimpleLoops):
@pytest.fixture(scope="class")
def netAD(self):
return em.Deposit([self.A, self.B, self.C, self.D])
@pytest.fixture(scope="class")
def netAG(self):
return em.Deposit([self.A, self.B, self.C, self.D, self.E, self.F, self.G])
def test_find_any_loop(self, netAG):
finder = em.LoopFinder(netAG)
loop = finder.find_any_loop(start=self.A)
assert len(loop) > 3
def test_loop_A_B_C_D(self, netAD):
finder = em.LoopFinder(netAD)
finder.search(self.A)
solutions = list(finder)
assert len(solutions) == 1
assert collect_ordered(solutions[0]) == "A,B,C,D"
def test_loop_D_A_B_C(self, netAD):
finder = em.LoopFinder(netAD)
finder.search(self.D)
solutions = list(finder)
assert len(solutions) == 1
assert collect_ordered(solutions[0]) == "A,B,C,D"
def test_loop_A_to_D_unique_solutions(self, netAD):
finder = em.LoopFinder(netAD)
finder.search(self.A)
# rotated edges, same loop
finder.search(self.D)
solutions = list(finder)
assert len(solutions) == 1
def test_loops_A_to_G(self, netAG):
finder = em.LoopFinder(netAG, timeout=10)
finder.search(self.A)
solutions = list(finder)
assert len(solutions) == 2
expected = {"A,B,C,D", "A,E,F,G,C,D"}
assert collect_ordered(solutions[0]) in expected
assert collect_ordered(solutions[1]) in expected
def simple_loops() -> em.Deposit:
# 0 1 2
# 1 +-C-+-G-+
# | | |
# D B F
# | | |
# 0 +-A-+-E-+
return em.Deposit(
[
em.make_edge((0, 0), (1, 0), length=0.5, payload="A"),
em.make_edge((1, 0), (1, 1), payload="B"),
em.make_edge((1, 1), (0, 1), payload="C"),
em.make_edge((0, 1), (0, 0), payload="D"),
em.make_edge((1, 0), (2, 0), payload="E"),
em.make_edge((2, 0), (2, 1), payload="F"),
em.make_edge((2, 1), (1, 1), payload="G"),
]
)
def complex_loops() -> Sequence[em.Edge]:
# 0 1 2 3
# 1 +-C-+-I-+-G-+
# | | | |
# D B H F
# | | | |
# 0 +-A-+-J-+-E-+
return [
em.make_edge((0, 0), (1, 0), payload="A"),
em.make_edge((1, 0), (1, 1), payload="B"),
em.make_edge((1, 1), (0, 1), payload="C"),
em.make_edge((0, 1), (0, 0), payload="D"),
em.make_edge((2, 0), (3, 0), payload="E"),
em.make_edge((3, 0), (3, 1), payload="F"),
em.make_edge((3, 1), (2, 1), payload="G"),
em.make_edge((2, 1), (2, 0), payload="H"),
em.make_edge((1, 1), (2, 1), payload="I"),
em.make_edge((1, 0), (2, 0), payload="J"),
]
def test_find_all_sequential():
# 0 1 2 3
# 1 +-C-+-I-+-G-+
# | | | |
# D B H F
# | | | |
# 0 +-A-+-J-+-E-+
edges = complex_loops()
result = list(em.find_all_sequential_chains(edges))
assert len(result) == 4
assert collect_ordered(result[0]) == "A,B,C,D"
assert collect_ordered(result[1]) == "E,F,G,H"
assert collect_ordered(result[2]) == "I"
assert collect_ordered(result[3]) == "J"
def grid() -> Sequence[em.Edge]:
# 0 1 2
# 2 +-F-+-E-+
# G J D
# 1 +-K-+-L-+
# H I C
# 0 +-A-+-B-+
return [
em.make_edge((0, 0), (1, 0), payload="A"),
em.make_edge((1, 0), (2, 0), payload="B"),
em.make_edge((2, 0), (2, 1), payload="C"),
em.make_edge((2, 1), (2, 2), payload="D"),
em.make_edge((2, 2), (1, 2), payload="E"),
em.make_edge((1, 2), (0, 2), payload="F"),
em.make_edge((0, 2), (0, 1), payload="G"),
em.make_edge((0, 1), (0, 0), payload="H"),
em.make_edge((1, 0), (1, 1), payload="I"),
em.make_edge((1, 1), (1, 2), payload="J"),
em.make_edge((0, 1), (1, 1), payload="K"),
em.make_edge((1, 1), (2, 1), payload="L"),
]
def test_find_all_complex_loops():
# 0 1 2
# 2 +-F-+-E-+
# G J D
# 1 +-K-+-L-+
# H I C
# 0 +-A-+-B-+
edges = grid()
result = em.find_all_loops(em.Deposit(edges))
assert len(result) == 13
unique_loops = list(em.unique_chains(result))
assert len(unique_loops) == 13
class TestAPIFunction:
# 0 1 2
# 1 +-C-+-G-+
# | | |
# D B F
# | | |
# 0 +-A-+-E-+
def test_find_all_loop(self):
solutions = em.find_all_loops(simple_loops())
assert len(solutions) == 3
solution_strings = set(collect_ordered(s) for s in solutions)
valid_solutions = {
"A,B,C,D", # forward
"A,D,C,B", # reverse
"B,E,F,G", # forward
"B,G,F,E", # reverse
"A,E,F,G,C,D", # forward
"A,D,C,G,F,E", # reverse
}
assert len(solution_strings.intersection(valid_solutions)) == 3
def test_find_first_loop(self):
solution = em.find_loop(simple_loops())
assert len(solution) >= 4 # any loop is a valid solution
def test_find_shortest_loop(self):
solution = em.shortest_chain(em.find_all_loops(simple_loops()))
assert len(solution) == 4
assert collect_ordered(solution) == "A,B,C,D"
def test_find_longest_loop(self):
solution = em.longest_chain(em.find_all_loops(simple_loops()))
assert len(solution) == 6
assert collect_ordered(solution) == "A,E,F,G,C,D"
class TestFindAllDisconnectedLoops:
# 0 1 2 3
# 1 +-C-+ +-G-+
# | | | |
# D B H F
# | | | |
# 0 +-A-+ +-E-+
A = em.make_edge((0, 0), (1, 0), payload="A")
B = em.make_edge((1, 0), (1, 1), payload="B")
C = em.make_edge((1, 1), (0, 1), payload="C")
D = em.make_edge((0, 1), (0, 0), payload="D")
E = em.make_edge((2, 0), (3, 0), payload="E")
F = em.make_edge((3, 0), (3, 1), payload="F")
G = em.make_edge((3, 1), (2, 1), payload="G")
H = em.make_edge((2, 1), (2, 0), payload="H")
def test_find_all_loops(self):
solutions = em.find_all_loops(
em.Deposit((self.A, self.B, self.C, self.D, self.E, self.F, self.G, self.H))
)
assert len(solutions) == 2
solution_strings = [collect_ordered(s) for s in solutions]
assert "A,B,C,D" in solution_strings
assert "E,F,G,H" in solution_strings
def test_find_all_shuffled_loops(self):
solutions = em.find_all_loops(
em.Deposit((self.H, self.B, self.F, self.D, self.E, self.C, self.G, self.A))
)
assert len(solutions) == 2
solution_strings = [collect_ordered(s) for s in solutions]
assert "A,B,C,D" in solution_strings
assert "E,F,G,H" in solution_strings
class TestChainFinder:
# 0 1 2 3 4 5
# 2 G
# 1 F
# 0 +-A-+-B-+-C-+-D-+-E-+
# -1 I
# -2 J
A = em.make_edge((0, 0), (1, 0), payload="A")
B = em.make_edge((1, 0), (2, 0), payload="B")
C = em.make_edge((2, 0), (3, 0), payload="C")
D = em.make_edge((3, 0), (4, 0), payload="D")
E = em.make_edge((4, 0), (5, 0), payload="E")
F = em.make_edge((2, 0), (2, 1), payload="F")
G = em.make_edge((2, 1), (2, 2), payload="G")
I = em.make_edge((2, 0), (2, -1), payload="I")
J = em.make_edge((2, -1), (2, -2), payload="J")
def test_find_simple_chain(self):
edges = [self.A, self.B, self.C, self.D, self.E]
deposit = em.Deposit(edges)
for edge in edges:
result = em.find_simple_chain(deposit, edge)
assert collect_ordered(result) == "A,B,C,D,E"
def test_find_all_simple_chains(self):
edges = [self.A, self.B, self.C, self.D, self.E, self.F, self.G, self.I, self.J]
result = em.find_all_simple_chains(em.Deposit(edges))
assert len(result) == 4
def test_closed_loop(self):
# 1 +-C-+
# | |
# D B
# | |
# 0 +-A-+
A = em.make_edge((0, 0), (1, 0), payload="A")
B = em.make_edge((1, 0), (1, 1), payload="B")
C = em.make_edge((1, 1), (0, 1), payload="C")
D = em.make_edge((0, 1), (0, 0), payload="D")
deposit = em.Deposit([A, B, C, D])
for edge in [A, B, C, D]:
result = em.find_simple_chain(deposit, edge)
assert collect_ordered(result) == "A,B,C,D"
class TestWrappingChains:
# 0 1 2 3 4 5
# 0 +-A-+-B-+-C-+-D-+-E-+
A = em.make_edge((0, 0), (1, 0), payload="A")
B = em.make_edge((1, 0), (2, 0), payload="B")
C = em.make_edge((2, 0), (3, 0), payload="C")
D = em.make_edge((3, 0), (4, 0), payload="D")
E = em.make_edge((4, 0), (5, 0), payload="E")
@pytest.fixture(scope="class")
def edges(self):
return (self.A, self.B, self.C, self.D, self.E)
def test_wrap_chain(self, edges: list[em.Edge]):
wrapped_chain = em.wrap_simple_chain(edges)
wrapper = wrapped_chain.payload
assert isinstance(wrapper, em.EdgeWrapper)
assert wrapper.edges == edges
def test_is_wrapped_chain(self, edges: list[em.Edge]):
wrapped_chain = em.wrap_simple_chain(edges)
assert em.is_wrapped_chain(wrapped_chain) is True
assert em.is_wrapped_chain(self.A) is False
def test_wrapping_empty_chain_raises_exception(self):
with pytest.raises(ValueError):
em.wrap_simple_chain([])
def test_wrapping_single_edge_raises_exception(self):
with pytest.raises(ValueError):
em.wrap_simple_chain([self.A])
def test_wrapping_unlinked_edges_raises_exception(self):
with pytest.raises(ValueError):
em.wrap_simple_chain([self.A, self.C])
def test_wrapping_loop_raises_exception(self):
with pytest.raises(ValueError):
em.wrap_simple_chain([self.A, self.A.reversed()])
def test_unwrap_chain(self, edges: list[em.Edge]):
wrapped_chain = em.wrap_simple_chain(edges)
chain = em.unwrap_simple_chain(wrapped_chain)
assert len(chain) == 5
assert chain == edges
def test_unwrap_reversed_chain(self, edges: list[em.Edge]):
wrapped_chain = em.wrap_simple_chain(edges)
reversed_edge = wrapped_chain.reversed()
chain = em.unwrap_simple_chain(reversed_edge)
assert len(chain) == 5
assert chain[0].start == reversed_edge.start
assert chain[-1].end == reversed_edge.end
assert chain[0] == edges[-1]
assert chain[0].is_reverse is not edges[-1].is_reverse
assert chain[-1] == edges[0]
assert chain[-1].is_reverse is not edges[0].is_reverse
def test_unwrapping_single_edge(self):
edges = em.unwrap_simple_chain(self.A)
assert len(edges) == 1
assert edges[0] == self.A
def test_flatten_nested_edges(self):
de = em.wrap_simple_chain([self.D, self.E])
ab = em.wrap_simple_chain([self.A, self.B])
cde = em.wrap_simple_chain([self.C, de])
abcde = em.wrap_simple_chain([ab, cde])
assert collect_ordered(list(em.flatten(abcde))) == "A,B,C,D,E"
def test_flatten_empty_sequence(self):
assert len(list(em.flatten([]))) == 0
class TestOpenChainFinder:
def test_find_all_open_chains(self):
# 0 1 2 3 4
# 3 +---+---+-E-+-F-+
# | | D | |
# 2 +-A-+-B-+-C-+---+
# | G | | |
# 1 +---+-H-+---+---+
# | | I | |
# 0 +---+---+---+---+
# all end to end connections:
# - 3 ABC or CBA
# - 4 AGHI
# - 4 C..F
# - 5 A...F
# - 5 C...I
# - 7 I.....F
A = em.make_edge((0, 2), (1, 2), payload="A")
B = em.make_edge((1, 2), (2, 2), payload="B")
C = em.make_edge((2, 2), (3, 2), payload="C")
D = em.make_edge((2, 2), (2, 3), payload="D")
E = em.make_edge((2, 3), (3, 3), payload="E")
F = em.make_edge((3, 3), (4, 3), payload="F")
G = em.make_edge((1, 2), (1, 1), payload="G")
H = em.make_edge((1, 1), (2, 1), payload="H")
I = em.make_edge((2, 1), (2, 0), payload="I")
edges = (H, C, E, D, B, G, F, A, I)
combinations = em.find_all_open_chains(em.Deposit(edges))
assert len(combinations) == 6
assert len(combinations[0]) == 3
assert collect(combinations[0]) in ("A,B,C", "C,B,A")
assert len(combinations[-1]) == 7
assert collect(combinations[-1]) in ("I,H,G,B,D,E,F", "F,E,D,B,G,H,I")
def test_does_not_detect_closed_loops(self):
# 1 +-C-+
# | |
# D B
# | |
# 0 +-A-+
A = em.make_edge((0, 0), (1, 0))
B = em.make_edge((1, 0), (1, 1))
C = em.make_edge((1, 1), (0, 1))
D = em.make_edge((0, 1), (0, 0))
deposit = em.Deposit([A, B, C, D])
assert len(em.find_all_open_chains(deposit)) == 0
def test_not_does_detect_indirect_loops(self):
# 1 +-C-+
# | |
# D B
# | |
# 0 +-A-+-E-+
A = em.make_edge((0, 0), (1, 0), payload="A")
B = em.make_edge((1, 0), (1, 1), payload="B")
C = em.make_edge((1, 1), (0, 1), payload="C")
D = em.make_edge((0, 1), (0, 0), payload="D")
E = em.make_edge((1, 0), (2, 0), payload="E")
deposit = em.Deposit([A, B, C, D, E])
result = set(collect(s) for s in em.find_all_open_chains(deposit))
assert len(result) == 0
class TestFindLoopByEdge:
# 0 1 2
# 2 +-F-+-E-+
# G J D
# 1 +-K-+-L-+
# H I C
# 0 +-A-+-B-+
edges = grid()
def edge(self, payload: str):
for edge in self.edges:
if edge.payload == payload:
return edge
raise ValueError(f"edge {payload} does not exist")
def test_search_continuation_clockwise(self):
loop = em.find_loop_by_edge(
em.Deposit(self.edges), self.edge("A"), clockwise=True
)
assert len(loop) == 4
assert collect(loop) == "A,I,K,H"
def test_search_continuation_counter_clockwise(self):
loop = em.find_loop_by_edge(
em.Deposit(self.edges), self.edge("A"), clockwise=False
)
assert len(loop) == 8
assert collect(loop) == "A,B,C,D,E,F,G,H"
def test_filter_coincident_edges():
edges = list(grid())
edges.extend(grid()) # 2x the same edges
assert len(em.filter_coincident_edges(em.Deposit(edges))) == 12
class TestFilterCloseVertices:
def test_coincident_vertices(self):
vertices = Vec3.list([(0, 0), (0, 0), (1, 1), (1, 1)])
rt = rtree.RTree(vertices)
result = em.filter_close_vertices(rt, gap_tol=1e-9)
# You don't know which vertices were removed!
assert len(result) == 2
def test_chain_of_close_vertices(self):
vertices = Vec3.list([(0, 0), (1, 0), (2, 0), (3, 0)])
rt = rtree.RTree(vertices)
result = em.filter_close_vertices(rt, gap_tol=1)
# You don't know which vertices were removed!
assert len(result) == 2
def test_grid_of_close_vertices(self):
# fmt: off
vertices = Vec3.list([
(0, 0), (1, 0), (2, 0), (3, 0),
(0, 1), (1, 1), (2, 1), (3, 1),
(0, 2), (1, 2), (2, 2), (3, 2),
(0, 3), (1, 3), (2, 3), (3, 3)
])
# fmt: on
rt = rtree.RTree(vertices)
result = em.filter_close_vertices(rt, gap_tol=1)
# You don't know which vertices were removed!
assert len(result) == 8
class TestSortEdgesByAngle:
# 0 1 2
# 2 +---+---+
# |\ | /|
# | D C B |
# | \|/ |
# 1 +-E-+-A-+
# | /|\ |
# | F G H |
# |/ | \|
# 0 +---+---+
A = em.make_edge((1, 1), (2, 1), payload="A")
B = em.make_edge((1, 1), (2, 2), payload="B")
C = em.make_edge((1, 1), (1, 2), payload="C")
D = em.make_edge((1, 1), (0, 2), payload="D")
E = em.make_edge((1, 1), (0, 1), payload="E")
F = em.make_edge((1, 1), (0, 0), payload="F")
G = em.make_edge((1, 1), (1, 0), payload="G")
H = em.make_edge((1, 1), (2, 0), payload="H")
def test_edges_B_C_base_A(self):
edges = [self.C, self.B]
base = self.A.reversed()
result = em.sort_edges_to_base(edges, base)
assert result[0] is self.B
assert result[1] is self.C
def test_edges_G_H_base_A(self):
edges = [self.G, self.H]
base = self.A.reversed()
result = em.sort_edges_to_base(edges, base)
assert result[0] is self.G
assert result[1] is self.H
def test_edges_B_H_base_A(self):
edges = [self.H, self.B]
base = self.A.reversed()
result = em.sort_edges_to_base(edges, base)
assert result[0] is self.B
assert result[1] is self.H
def test_edges_A_B_base_C(self):
edges = [self.A, self.B]
base = self.C.reversed()
result = em.sort_edges_to_base(edges, base)
assert result[0] is self.A
assert result[1] is self.B
def test_edges_D_E_base_C(self):
edges = [self.D, self.E]
base = self.C.reversed()
result = em.sort_edges_to_base(edges, base)
assert result[0] is self.D
assert result[1] is self.E
def test_edges_B_D_base_C(self):
edges = [self.B, self.D]
base = self.C.reversed()
result = em.sort_edges_to_base(edges, base)
assert result[0] is self.D
assert result[1] is self.B
class TestSubtractEdges:
def test_subtract_nothing(self):
edges = list(grid())
result = em.subtract_edges(edges, [])
assert len(result) == len(edges)
def test_subtract_from_nothing(self):
edges = list(grid())
result = em.subtract_edges([], edges)
assert len(result) == 0
def test_subtract_one_edge(self):
edges = list(grid())
first = edges[0]
result = em.subtract_edges(edges, [first])
assert len(result) == len(edges) - 1
assert first not in result
def test_subtract_two_edges(self):
edges = list(grid())
two = edges[:2]
result = em.subtract_edges(edges, two)
assert len(result) == len(edges) - 2
assert two[0] not in result
assert two[1] not in result
if __name__ == "__main__":
pytest.main([__file__])
|