File: test_546_edgeminer.py

package info (click to toggle)
ezdxf 1.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 104,528 kB
  • sloc: python: 182,341; makefile: 116; lisp: 20; ansic: 4
file content (858 lines) | stat: -rw-r--r-- 28,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# Copyright (c) 2024, Manfred Moitzi
# License: MIT License
from __future__ import annotations
from typing import Sequence
import pytest

from ezdxf import edgeminer as em
from ezdxf.math import Vec3, rtree


class TestBasicRequirements:
    @pytest.fixture(params=[Vec3, em._Vertex], scope="class")
    def abc(self, request):
        cls = request.param
        a = cls((1, 2, 3))
        b = cls((1, 2, 3))
        c = cls((1, 2, 3))
        return a, b, c

    def test_vec3_requirements(self, abc):
        a, b, c = abc

        # Same locations have unique identities.
        # Maybe future me decides to return the same instance for same locations as
        # optimization, because Vec3 is immutable!
        assert a is not b
        assert a is not c
        assert b is not c

        # equality is EXACT same location and vice versa
        # floating point equality on bit-level!
        assert a == b
        assert a == c
        assert b == c

        # EXACT same location has same hash
        assert hash(a) == hash(b)
        assert hash(a) == hash(c)
        assert hash(b) == hash(c)

    def test_rtree_requirements(self, abc):
        rt = rtree.RTree(abc)
        assert len(rt) == 3, "expected multiple entries for the same location"
        result = list(rt.points_in_sphere(Vec3(1, 2, 3), radius=0.1))
        assert len(result) == 3, "expected multiple entries for the same location"
        assert set([id(v) for v in abc]) == set(
            [id(v) for v in result]
        ), "expected the identical instances"


class TestEdge:
    def test_init(self):
        edge = em.make_edge((0, 0), (1, 0))
        assert edge.start == Vec3(0, 0)
        assert edge.end == Vec3(1, 0)
        assert edge.length == 1.0
        assert edge.is_reverse is False
        assert edge.payload is None

    def test_edge_is_immutable(self):
        edge = em.make_edge((0, 0), (1, 0))
        with pytest.raises(AttributeError):
            edge.id = 0

    def test_identity(self):
        edge0 = em.make_edge((0, 0), (1, 0))
        edge1 = em.make_edge((0, 0), (1, 0))
        assert edge0 == edge0
        assert edge0 != edge1, "each edge should have an unique identity"
        assert edge0 == edge0.reversed(), "reversed copies represent the same edge"

    def test_reversed_copy(self):
        edge = em.make_edge((0, 0), (1, 0))
        clone = edge.reversed()
        assert edge == clone
        assert edge.id == clone.id
        assert edge.start == clone.end
        assert edge.end == clone.start
        assert edge.length == clone.length
        assert edge.is_reverse is (not clone.is_reverse)
        assert edge.payload is clone.payload

    def test_edge_can_be_used_in_sets(self):
        A = em.make_edge((0, 0), (1, 0))
        B = em.make_edge((1, 0), (1, 1))
        C = em.make_edge((1, 1), (0, 1))

        s1 = set([A, B])
        s2 = set([C, B])
        result = s1.intersection(s2)
        assert len(result) == 1
        assert B in result


class SimpleLoops:
    #   0   1   2
    # 1 +-C-+-G-+
    #   |   |   |
    #   D   B   F
    #   |   |   |
    # 0 +-A-+-E-+

    A = em.make_edge((0, 0), (1, 0), length=0.5, payload="A")
    B = em.make_edge((1, 0), (1, 1), payload="B")
    C = em.make_edge((1, 1), (0, 1), payload="C")
    D = em.make_edge((0, 1), (0, 0), payload="D")
    E = em.make_edge((1, 0), (2, 0), payload="E")
    F = em.make_edge((2, 0), (2, 1), payload="F")
    G = em.make_edge((2, 1), (1, 1), payload="G")


class TestEdgeDeposit(SimpleLoops):
    #   0   1   2
    # 1 +-C-+-G-+
    #   |   |   |
    #   D   B   F
    #   |   |   |
    # 0 +-A-+-E-+
    @pytest.fixture
    def edges(self):
        return [self.A, self.B, self.C, self.D, self.E, self.F, self.G]

    def test_get_degree_of_vertex(self, edges: list[em.Edge]):
        deposit = em.Deposit(edges)
        assert deposit.degree((0, 0)) == 2
        assert deposit.degree((1, 0)) == 3
        assert deposit.degree((-1, -1)) == 0, "not in deposit"

    def test_get_degree_of_vertices(self, edges: list[em.Edge]):
        deposit = em.Deposit(edges)
        assert deposit.degrees([(0, 0), (1, 0), (-1, -1)]) == (2, 3, 0)
        assert deposit.degrees([]) == ()

    def test_degree_counter(self, edges: list[em.Edge]):
        deposit = em.Deposit(edges)
        counter = deposit.degree_counter()
        assert counter[1] == 0
        assert counter[2] == 4
        assert counter[3] == 2
        assert deposit.max_degree == 3

    def test_unique_vertices(self, edges: list[em.Edge]):
        deposit = em.Deposit(edges)
        assert len(deposit.unique_vertices()) == 6

    def test_find_edges_linked_to_vertex_A_D(self):
        deposit = em.Deposit([self.A, self.B, self.C, self.D])
        edges = deposit.edges_linked_to(self.A.start)
        ids = set(e.id for e in edges)
        assert len(ids) == 2
        assert self.A.id in ids
        assert self.D.id in ids

    def test_find_edges_linked_to_vertex_A_G(self, edges: list[em.Edge]):
        deposit = em.Deposit(edges)
        linked_edges = deposit.edges_linked_to(self.B.end)
        ids = set(e.id for e in linked_edges)
        assert len(ids) == 3
        assert self.B.id in ids
        assert self.C.id in ids
        assert self.G.id in ids

    def test_find_nearest_edge(self):
        deposit = em.Deposit([self.A, self.B, self.C, self.D])
        edge = deposit.find_nearest_edge((0.5, 0.6))
        assert edge is self.C

    def test_build_network_A_D(self):
        deposit = em.Deposit([self.A, self.B, self.C, self.D])
        # network of all edges connected directly or indirectly to A
        network = deposit.find_network(self.A)
        assert len(network) == 4
        assert self.B in network
        assert self.C in network
        assert self.D in network

    def test_solitary_edge_is_a_network(self):
        deposit = em.Deposit([self.A, self.C])
        network = deposit.find_network(self.A)
        assert len(network) == 0

    def test_build_network_A_G(self, edges: list[em.Edge]):
        deposit = em.Deposit(edges)
        # network of all edges connected directly or indirectly to B
        network = deposit.find_network(self.B)
        assert len(network) == 7

    def test_build_all_networks(self, edges: list[em.Edge]):
        deposit = em.Deposit(edges)
        assert len(deposit.find_all_networks()) == 1

    def test_build_all_disconnected_networks(self):
        #   0   1   2   3
        # 1 +-C-+   +-G-+
        #   |   |   |   |
        #   D   B   H   F
        #   |   |   |   |
        # 0 +-A-+   +-E-+
        E = em.make_edge((2, 0), (3, 0), payload="E")
        F = em.make_edge((3, 0), (3, 1), payload="F")
        G = em.make_edge((3, 1), (2, 1), payload="G")
        H = em.make_edge((2, 1), (2, 0), payload="H")

        deposit = em.Deposit([self.A, self.B, self.C, self.D, E, F, G, H])
        assert len(deposit.find_all_networks()) == 2

    def test_build_all_networks_solitary_edges(self):
        deposit = em.Deposit([self.A, self.C, self.F])
        assert len(deposit.find_all_networks()) == 0, "a single edge is not a network"

    def test_find_loose_ends(self):
        deposit = em.Deposit([self.A, self.E, self.B, self.C, self.G])
        edges = set(deposit.find_leafs())
        assert len(edges) == 4
        assert self.B not in edges

    def test_single_edge_is_a_loose_ends(self):
        deposit = em.Deposit([self.A])
        edges = list(deposit.find_leafs())
        assert len(edges) == 1

    def test_loops_do_not_have_loose_ends(self):
        deposit = em.Deposit([self.A, self.B, self.C, self.D])
        edges = set(deposit.find_leafs())
        assert len(edges) == 0


class TestLoop:
    # +-C-+
    # |   |
    # D   B
    # |   |
    # +-A-+

    A = em.make_edge((0, 0), (1, 0))
    B = em.make_edge((1, 0), (1, 1))
    C = em.make_edge((1, 1), (0, 1))
    D = em.make_edge((0, 1), (0, 0))

    def test_loop_key(self):
        loop1 = (self.A, self.B, self.C)
        loop2 = (self.B, self.C, self.A)  # rotated edges, same loop

        assert em.loop_key(loop1) == em.loop_key(loop2)


def collect(chain: Sequence[em.Edge]):
    return ",".join(e.payload for e in chain)


def ordered_edges(edges: Sequence[em.Edge], reverse=False):
    """Returns the loop edges in key order."""
    edge_dict = {e.id: e for e in edges}
    return (edge_dict[eid] for eid in em.loop_key(edges, reverse=reverse))


def collect_ordered(chain: Sequence[em.Edge]) -> str:
    """Returns the payload as strings in key order.

    Key order:
        Loop starts with the edge with the smallest id.
    """
    if len(chain) == 0:
        return ""
    elif len(chain) == 1:
        return chain[0].payload  # type: ignore
    return ",".join([e.payload for e in ordered_edges(chain)])


class TestFindSequential:
    #   0   1   2
    # 1 +-E-+-D-+
    #   |       |
    #   F       C
    #   |       |
    # 0 +-A-+-B-+

    A = em.make_edge((0, 0), (1, 0), payload="A")
    B = em.make_edge((1, 0), (2, 0), payload="B")
    C = em.make_edge((2, 0), (2, 1), payload="C")
    D = em.make_edge((2, 1), (1, 1), payload="D")
    E = em.make_edge((1, 1), (0, 1), payload="E")
    F = em.make_edge((0, 1), (0, 0), payload="F")

    def test_is_forward_connected(self):
        assert em.is_forward_connected(self.A, self.B) is True
        assert em.is_forward_connected(self.A, self.F) is False

    def test_find_sequential(self):
        edges = [self.A, self.B, self.C, self.D, self.E, self.F]
        result = em.find_sequential_chain(edges)
        assert len(result) == 6
        assert result[0] is self.A
        assert result[-1] is self.F


class TestLoopFinderSimple(SimpleLoops):

    @pytest.fixture(scope="class")
    def netAD(self):
        return em.Deposit([self.A, self.B, self.C, self.D])

    @pytest.fixture(scope="class")
    def netAG(self):
        return em.Deposit([self.A, self.B, self.C, self.D, self.E, self.F, self.G])

    def test_find_any_loop(self, netAG):
        finder = em.LoopFinder(netAG)
        loop = finder.find_any_loop(start=self.A)
        assert len(loop) > 3

    def test_loop_A_B_C_D(self, netAD):
        finder = em.LoopFinder(netAD)
        finder.search(self.A)
        solutions = list(finder)
        assert len(solutions) == 1
        assert collect_ordered(solutions[0]) == "A,B,C,D"

    def test_loop_D_A_B_C(self, netAD):
        finder = em.LoopFinder(netAD)
        finder.search(self.D)
        solutions = list(finder)
        assert len(solutions) == 1
        assert collect_ordered(solutions[0]) == "A,B,C,D"

    def test_loop_A_to_D_unique_solutions(self, netAD):
        finder = em.LoopFinder(netAD)
        finder.search(self.A)
        # rotated edges, same loop
        finder.search(self.D)
        solutions = list(finder)
        assert len(solutions) == 1

    def test_loops_A_to_G(self, netAG):
        finder = em.LoopFinder(netAG, timeout=10)
        finder.search(self.A)
        solutions = list(finder)
        assert len(solutions) == 2
        expected = {"A,B,C,D", "A,E,F,G,C,D"}
        assert collect_ordered(solutions[0]) in expected
        assert collect_ordered(solutions[1]) in expected


def simple_loops() -> em.Deposit:
    #   0   1   2
    # 1 +-C-+-G-+
    #   |   |   |
    #   D   B   F
    #   |   |   |
    # 0 +-A-+-E-+
    return em.Deposit(
        [
            em.make_edge((0, 0), (1, 0), length=0.5, payload="A"),
            em.make_edge((1, 0), (1, 1), payload="B"),
            em.make_edge((1, 1), (0, 1), payload="C"),
            em.make_edge((0, 1), (0, 0), payload="D"),
            em.make_edge((1, 0), (2, 0), payload="E"),
            em.make_edge((2, 0), (2, 1), payload="F"),
            em.make_edge((2, 1), (1, 1), payload="G"),
        ]
    )


def complex_loops() -> Sequence[em.Edge]:
    #   0   1   2   3
    # 1 +-C-+-I-+-G-+
    #   |   |   |   |
    #   D   B   H   F
    #   |   |   |   |
    # 0 +-A-+-J-+-E-+

    return [
        em.make_edge((0, 0), (1, 0), payload="A"),
        em.make_edge((1, 0), (1, 1), payload="B"),
        em.make_edge((1, 1), (0, 1), payload="C"),
        em.make_edge((0, 1), (0, 0), payload="D"),
        em.make_edge((2, 0), (3, 0), payload="E"),
        em.make_edge((3, 0), (3, 1), payload="F"),
        em.make_edge((3, 1), (2, 1), payload="G"),
        em.make_edge((2, 1), (2, 0), payload="H"),
        em.make_edge((1, 1), (2, 1), payload="I"),
        em.make_edge((1, 0), (2, 0), payload="J"),
    ]


def test_find_all_sequential():
    #   0   1   2   3
    # 1 +-C-+-I-+-G-+
    #   |   |   |   |
    #   D   B   H   F
    #   |   |   |   |
    # 0 +-A-+-J-+-E-+
    edges = complex_loops()
    result = list(em.find_all_sequential_chains(edges))

    assert len(result) == 4
    assert collect_ordered(result[0]) == "A,B,C,D"
    assert collect_ordered(result[1]) == "E,F,G,H"
    assert collect_ordered(result[2]) == "I"
    assert collect_ordered(result[3]) == "J"


def grid() -> Sequence[em.Edge]:
    #   0   1   2
    # 2 +-F-+-E-+
    #   G   J   D
    # 1 +-K-+-L-+
    #   H   I   C
    # 0 +-A-+-B-+
    return [
        em.make_edge((0, 0), (1, 0), payload="A"),
        em.make_edge((1, 0), (2, 0), payload="B"),
        em.make_edge((2, 0), (2, 1), payload="C"),
        em.make_edge((2, 1), (2, 2), payload="D"),
        em.make_edge((2, 2), (1, 2), payload="E"),
        em.make_edge((1, 2), (0, 2), payload="F"),
        em.make_edge((0, 2), (0, 1), payload="G"),
        em.make_edge((0, 1), (0, 0), payload="H"),
        em.make_edge((1, 0), (1, 1), payload="I"),
        em.make_edge((1, 1), (1, 2), payload="J"),
        em.make_edge((0, 1), (1, 1), payload="K"),
        em.make_edge((1, 1), (2, 1), payload="L"),
    ]


def test_find_all_complex_loops():
    #   0   1   2
    # 2 +-F-+-E-+
    #   G   J   D
    # 1 +-K-+-L-+
    #   H   I   C
    # 0 +-A-+-B-+
    edges = grid()
    result = em.find_all_loops(em.Deposit(edges))
    assert len(result) == 13

    unique_loops = list(em.unique_chains(result))
    assert len(unique_loops) == 13


class TestAPIFunction:
    #   0   1   2
    # 1 +-C-+-G-+
    #   |   |   |
    #   D   B   F
    #   |   |   |
    # 0 +-A-+-E-+
    def test_find_all_loop(self):
        solutions = em.find_all_loops(simple_loops())
        assert len(solutions) == 3
        solution_strings = set(collect_ordered(s) for s in solutions)
        valid_solutions = {
            "A,B,C,D",  # forward
            "A,D,C,B",  # reverse
            "B,E,F,G",  # forward
            "B,G,F,E",  # reverse
            "A,E,F,G,C,D",  # forward
            "A,D,C,G,F,E",  # reverse
        }
        assert len(solution_strings.intersection(valid_solutions)) == 3

    def test_find_first_loop(self):
        solution = em.find_loop(simple_loops())
        assert len(solution) >= 4  # any loop is a valid solution

    def test_find_shortest_loop(self):
        solution = em.shortest_chain(em.find_all_loops(simple_loops()))
        assert len(solution) == 4
        assert collect_ordered(solution) == "A,B,C,D"

    def test_find_longest_loop(self):
        solution = em.longest_chain(em.find_all_loops(simple_loops()))
        assert len(solution) == 6
        assert collect_ordered(solution) == "A,E,F,G,C,D"


class TestFindAllDisconnectedLoops:
    #   0   1   2   3
    # 1 +-C-+   +-G-+
    #   |   |   |   |
    #   D   B   H   F
    #   |   |   |   |
    # 0 +-A-+   +-E-+

    A = em.make_edge((0, 0), (1, 0), payload="A")
    B = em.make_edge((1, 0), (1, 1), payload="B")
    C = em.make_edge((1, 1), (0, 1), payload="C")
    D = em.make_edge((0, 1), (0, 0), payload="D")
    E = em.make_edge((2, 0), (3, 0), payload="E")
    F = em.make_edge((3, 0), (3, 1), payload="F")
    G = em.make_edge((3, 1), (2, 1), payload="G")
    H = em.make_edge((2, 1), (2, 0), payload="H")

    def test_find_all_loops(self):
        solutions = em.find_all_loops(
            em.Deposit((self.A, self.B, self.C, self.D, self.E, self.F, self.G, self.H))
        )
        assert len(solutions) == 2
        solution_strings = [collect_ordered(s) for s in solutions]

        assert "A,B,C,D" in solution_strings
        assert "E,F,G,H" in solution_strings

    def test_find_all_shuffled_loops(self):
        solutions = em.find_all_loops(
            em.Deposit((self.H, self.B, self.F, self.D, self.E, self.C, self.G, self.A))
        )
        assert len(solutions) == 2
        solution_strings = [collect_ordered(s) for s in solutions]
        assert "A,B,C,D" in solution_strings
        assert "E,F,G,H" in solution_strings


class TestChainFinder:
    #    0   1   2   3   4   5
    #  2         G
    #  1         F
    #  0 +-A-+-B-+-C-+-D-+-E-+
    # -1         I
    # -2         J

    A = em.make_edge((0, 0), (1, 0), payload="A")
    B = em.make_edge((1, 0), (2, 0), payload="B")
    C = em.make_edge((2, 0), (3, 0), payload="C")
    D = em.make_edge((3, 0), (4, 0), payload="D")
    E = em.make_edge((4, 0), (5, 0), payload="E")

    F = em.make_edge((2, 0), (2, 1), payload="F")
    G = em.make_edge((2, 1), (2, 2), payload="G")
    I = em.make_edge((2, 0), (2, -1), payload="I")
    J = em.make_edge((2, -1), (2, -2), payload="J")

    def test_find_simple_chain(self):
        edges = [self.A, self.B, self.C, self.D, self.E]
        deposit = em.Deposit(edges)
        for edge in edges:
            result = em.find_simple_chain(deposit, edge)
            assert collect_ordered(result) == "A,B,C,D,E"

    def test_find_all_simple_chains(self):
        edges = [self.A, self.B, self.C, self.D, self.E, self.F, self.G, self.I, self.J]
        result = em.find_all_simple_chains(em.Deposit(edges))
        assert len(result) == 4

    def test_closed_loop(self):
        # 1 +-C-+
        #   |   |
        #   D   B
        #   |   |
        # 0 +-A-+
        A = em.make_edge((0, 0), (1, 0), payload="A")
        B = em.make_edge((1, 0), (1, 1), payload="B")
        C = em.make_edge((1, 1), (0, 1), payload="C")
        D = em.make_edge((0, 1), (0, 0), payload="D")
        deposit = em.Deposit([A, B, C, D])
        for edge in [A, B, C, D]:
            result = em.find_simple_chain(deposit, edge)
            assert collect_ordered(result) == "A,B,C,D"


class TestWrappingChains:
    #    0   1   2   3   4   5
    #  0 +-A-+-B-+-C-+-D-+-E-+
    A = em.make_edge((0, 0), (1, 0), payload="A")
    B = em.make_edge((1, 0), (2, 0), payload="B")
    C = em.make_edge((2, 0), (3, 0), payload="C")
    D = em.make_edge((3, 0), (4, 0), payload="D")
    E = em.make_edge((4, 0), (5, 0), payload="E")

    @pytest.fixture(scope="class")
    def edges(self):
        return (self.A, self.B, self.C, self.D, self.E)

    def test_wrap_chain(self, edges: list[em.Edge]):
        wrapped_chain = em.wrap_simple_chain(edges)
        wrapper = wrapped_chain.payload
        assert isinstance(wrapper, em.EdgeWrapper)
        assert wrapper.edges == edges

    def test_is_wrapped_chain(self, edges: list[em.Edge]):
        wrapped_chain = em.wrap_simple_chain(edges)
        assert em.is_wrapped_chain(wrapped_chain) is True
        assert em.is_wrapped_chain(self.A) is False

    def test_wrapping_empty_chain_raises_exception(self):
        with pytest.raises(ValueError):
            em.wrap_simple_chain([])

    def test_wrapping_single_edge_raises_exception(self):
        with pytest.raises(ValueError):
            em.wrap_simple_chain([self.A])

    def test_wrapping_unlinked_edges_raises_exception(self):
        with pytest.raises(ValueError):
            em.wrap_simple_chain([self.A, self.C])

    def test_wrapping_loop_raises_exception(self):
        with pytest.raises(ValueError):
            em.wrap_simple_chain([self.A, self.A.reversed()])

    def test_unwrap_chain(self, edges: list[em.Edge]):
        wrapped_chain = em.wrap_simple_chain(edges)
        chain = em.unwrap_simple_chain(wrapped_chain)
        assert len(chain) == 5
        assert chain == edges

    def test_unwrap_reversed_chain(self, edges: list[em.Edge]):
        wrapped_chain = em.wrap_simple_chain(edges)
        reversed_edge = wrapped_chain.reversed()
        chain = em.unwrap_simple_chain(reversed_edge)
        assert len(chain) == 5
        assert chain[0].start == reversed_edge.start
        assert chain[-1].end == reversed_edge.end

        assert chain[0] == edges[-1]
        assert chain[0].is_reverse is not edges[-1].is_reverse
        assert chain[-1] == edges[0]
        assert chain[-1].is_reverse is not edges[0].is_reverse

    def test_unwrapping_single_edge(self):
        edges = em.unwrap_simple_chain(self.A)
        assert len(edges) == 1
        assert edges[0] == self.A

    def test_flatten_nested_edges(self):
        de = em.wrap_simple_chain([self.D, self.E])
        ab = em.wrap_simple_chain([self.A, self.B])
        cde = em.wrap_simple_chain([self.C, de])
        abcde = em.wrap_simple_chain([ab, cde])
        assert collect_ordered(list(em.flatten(abcde))) == "A,B,C,D,E"

    def test_flatten_empty_sequence(self):
        assert len(list(em.flatten([]))) == 0


class TestOpenChainFinder:

    def test_find_all_open_chains(self):
        #   0   1   2   3   4
        # 3 +---+---+-E-+-F-+
        #   |   |   D   |   |
        # 2 +-A-+-B-+-C-+---+
        #   |   G   |   |   |
        # 1 +---+-H-+---+---+
        #   |   |   I   |   |
        # 0 +---+---+---+---+
        # all end to end connections:
        # - 3 ABC or CBA
        # - 4 AGHI
        # - 4 C..F
        # - 5 A...F
        # - 5 C...I
        # - 7 I.....F

        A = em.make_edge((0, 2), (1, 2), payload="A")
        B = em.make_edge((1, 2), (2, 2), payload="B")
        C = em.make_edge((2, 2), (3, 2), payload="C")
        D = em.make_edge((2, 2), (2, 3), payload="D")
        E = em.make_edge((2, 3), (3, 3), payload="E")
        F = em.make_edge((3, 3), (4, 3), payload="F")
        G = em.make_edge((1, 2), (1, 1), payload="G")
        H = em.make_edge((1, 1), (2, 1), payload="H")
        I = em.make_edge((2, 1), (2, 0), payload="I")
        edges = (H, C, E, D, B, G, F, A, I)
        combinations = em.find_all_open_chains(em.Deposit(edges))
        assert len(combinations) == 6
        assert len(combinations[0]) == 3
        assert collect(combinations[0]) in ("A,B,C", "C,B,A")
        assert len(combinations[-1]) == 7
        assert collect(combinations[-1]) in ("I,H,G,B,D,E,F", "F,E,D,B,G,H,I")

    def test_does_not_detect_closed_loops(self):
        # 1 +-C-+
        #   |   |
        #   D   B
        #   |   |
        # 0 +-A-+
        A = em.make_edge((0, 0), (1, 0))
        B = em.make_edge((1, 0), (1, 1))
        C = em.make_edge((1, 1), (0, 1))
        D = em.make_edge((0, 1), (0, 0))
        deposit = em.Deposit([A, B, C, D])
        assert len(em.find_all_open_chains(deposit)) == 0

    def test_not_does_detect_indirect_loops(self):
        # 1 +-C-+
        #   |   |
        #   D   B
        #   |   |
        # 0 +-A-+-E-+
        A = em.make_edge((0, 0), (1, 0), payload="A")
        B = em.make_edge((1, 0), (1, 1), payload="B")
        C = em.make_edge((1, 1), (0, 1), payload="C")
        D = em.make_edge((0, 1), (0, 0), payload="D")
        E = em.make_edge((1, 0), (2, 0), payload="E")
        deposit = em.Deposit([A, B, C, D, E])
        result = set(collect(s) for s in em.find_all_open_chains(deposit))
        assert len(result) == 0


class TestFindLoopByEdge:
    #   0   1   2
    # 2 +-F-+-E-+
    #   G   J   D
    # 1 +-K-+-L-+
    #   H   I   C
    # 0 +-A-+-B-+
    edges = grid()

    def edge(self, payload: str):
        for edge in self.edges:
            if edge.payload == payload:
                return edge
        raise ValueError(f"edge {payload} does not exist")

    def test_search_continuation_clockwise(self):
        loop = em.find_loop_by_edge(
            em.Deposit(self.edges), self.edge("A"), clockwise=True
        )
        assert len(loop) == 4
        assert collect(loop) == "A,I,K,H"

    def test_search_continuation_counter_clockwise(self):
        loop = em.find_loop_by_edge(
            em.Deposit(self.edges), self.edge("A"), clockwise=False
        )
        assert len(loop) == 8
        assert collect(loop) == "A,B,C,D,E,F,G,H"


def test_filter_coincident_edges():
    edges = list(grid())
    edges.extend(grid())  # 2x the same edges
    assert len(em.filter_coincident_edges(em.Deposit(edges))) == 12


class TestFilterCloseVertices:
    def test_coincident_vertices(self):
        vertices = Vec3.list([(0, 0), (0, 0), (1, 1), (1, 1)])
        rt = rtree.RTree(vertices)
        result = em.filter_close_vertices(rt, gap_tol=1e-9)
        # You don't know which vertices were removed!
        assert len(result) == 2

    def test_chain_of_close_vertices(self):
        vertices = Vec3.list([(0, 0), (1, 0), (2, 0), (3, 0)])
        rt = rtree.RTree(vertices)
        result = em.filter_close_vertices(rt, gap_tol=1)
        # You don't know which vertices were removed!
        assert len(result) == 2

    def test_grid_of_close_vertices(self):
        # fmt: off
        vertices = Vec3.list([
            (0, 0), (1, 0), (2, 0), (3, 0),
            (0, 1), (1, 1), (2, 1), (3, 1),
            (0, 2), (1, 2), (2, 2), (3, 2),
            (0, 3), (1, 3), (2, 3), (3, 3)
        ])
        # fmt: on
        rt = rtree.RTree(vertices)
        result = em.filter_close_vertices(rt, gap_tol=1)
        # You don't know which vertices were removed!
        assert len(result) == 8


class TestSortEdgesByAngle:
    #   0   1   2
    # 2 +---+---+
    #   |\  |  /|
    #   | D C B |
    #   |  \|/  |
    # 1 +-E-+-A-+
    #   |  /|\  |
    #   | F G H |
    #   |/  |  \|
    # 0 +---+---+
    A = em.make_edge((1, 1), (2, 1), payload="A")
    B = em.make_edge((1, 1), (2, 2), payload="B")
    C = em.make_edge((1, 1), (1, 2), payload="C")
    D = em.make_edge((1, 1), (0, 2), payload="D")
    E = em.make_edge((1, 1), (0, 1), payload="E")
    F = em.make_edge((1, 1), (0, 0), payload="F")
    G = em.make_edge((1, 1), (1, 0), payload="G")
    H = em.make_edge((1, 1), (2, 0), payload="H")

    def test_edges_B_C_base_A(self):
        edges = [self.C, self.B]
        base = self.A.reversed()
        result = em.sort_edges_to_base(edges, base)
        assert result[0] is self.B
        assert result[1] is self.C

    def test_edges_G_H_base_A(self):
        edges = [self.G, self.H]
        base = self.A.reversed()
        result = em.sort_edges_to_base(edges, base)
        assert result[0] is self.G
        assert result[1] is self.H

    def test_edges_B_H_base_A(self):
        edges = [self.H, self.B]
        base = self.A.reversed()
        result = em.sort_edges_to_base(edges, base)
        assert result[0] is self.B
        assert result[1] is self.H

    def test_edges_A_B_base_C(self):
        edges = [self.A, self.B]
        base = self.C.reversed()
        result = em.sort_edges_to_base(edges, base)
        assert result[0] is self.A
        assert result[1] is self.B

    def test_edges_D_E_base_C(self):
        edges = [self.D, self.E]
        base = self.C.reversed()
        result = em.sort_edges_to_base(edges, base)
        assert result[0] is self.D
        assert result[1] is self.E

    def test_edges_B_D_base_C(self):
        edges = [self.B, self.D]
        base = self.C.reversed()
        result = em.sort_edges_to_base(edges, base)
        assert result[0] is self.D
        assert result[1] is self.B


class TestSubtractEdges:
    def test_subtract_nothing(self):
        edges = list(grid())
        result = em.subtract_edges(edges, [])
        assert len(result) == len(edges)

    def test_subtract_from_nothing(self):
        edges = list(grid())
        result = em.subtract_edges([], edges)
        assert len(result) == 0

    def test_subtract_one_edge(self):
        edges = list(grid())
        first = edges[0]
        result = em.subtract_edges(edges, [first])
        assert len(result) == len(edges) - 1
        assert first not in result

    def test_subtract_two_edges(self):
        edges = list(grid())
        two = edges[:2]
        result = em.subtract_edges(edges, two)
        assert len(result) == len(edges) - 2
        assert two[0] not in result
        assert two[1] not in result


if __name__ == "__main__":
    pytest.main([__file__])