1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
# Copyright (c) 2018 Manfred Moitzi
# License: MIT License
from math import isclose, radians, pi
from ezdxf.math import UCS, Vec3, X_AXIS, Y_AXIS, Z_AXIS, Matrix44
def test_ucs_init():
ucs = UCS()
assert ucs.origin == (0, 0, 0)
assert ucs.ux == (1, 0, 0)
assert ucs.uy == (0, 1, 0)
assert ucs.uz == (0, 0, 1)
assert ucs.from_wcs(Vec3(3, 4, 5)) == (3, 4, 5)
assert ucs.to_wcs(Vec3(5, 4, 3)) == (5, 4, 3)
def test_ucs_init_ux_uy():
ucs = UCS(ux=X_AXIS, uy=Y_AXIS)
assert ucs.uz == Z_AXIS
ucs = UCS(ux=Y_AXIS, uy=X_AXIS)
assert ucs.uz == -Z_AXIS
def test_ucs_init_ux_uz():
ucs = UCS(ux=X_AXIS, uz=Z_AXIS)
assert ucs.uy == Y_AXIS
def test_ucs_init_uy_uz():
ucs = UCS(uy=Y_AXIS, uz=Z_AXIS)
assert ucs.ux == X_AXIS
ucs = UCS(uz=X_AXIS, uy=Z_AXIS)
assert ucs.ux == Y_AXIS
def test_translation():
ucs = UCS(origin=(3, 4, 5))
assert ucs.origin == (3, 4, 5)
assert ucs.ux == (1, 0, 0)
assert ucs.uy == (0, 1, 0)
assert ucs.uz == (0, 0, 1)
assert ucs.from_wcs(Vec3(3, 4, 5)) == (0, 0, 0)
assert ucs.to_wcs(Vec3(1, 1, 1)) == (4, 5, 6)
def test_rotation():
# normalization is not necessary
ux = Vec3(1, 2, 0)
# only cartesian coord systems work
uy = ux.rotate_deg(90)
ucs = UCS(ux=ux, uy=uy)
assert ucs.ux == ux.normalize()
assert ucs.uy == uy.normalize()
assert ucs.uz == (0, 0, 1)
assert ucs.is_cartesian is True
def test_matrix44_rotation():
# normalization is not necessary
ux = Vec3(1, 2, 0)
# only cartesian coord systems work
uy = ux.rotate_deg(90)
ucs = UCS(ux=ux, uy=uy)
m = Matrix44.ucs(ux=ux.normalize(), uy=uy.normalize())
assert m.ux == ux.normalize()
assert m.uy == uy.normalize()
assert m.uz == (0, 0, 1)
assert m.is_cartesian
v = m.transform((1, 2, 3))
assert v == ucs.to_wcs((1, 2, 3))
assert m.ucs_vertex_from_wcs(v).isclose((1, 2, 3))
def test_transformation():
axis = Vec3.random()
angle = 1.5
ucs = UCS(origin=(3, 4, 5))
m = Matrix44.axis_rotate(axis, angle)
expected_origin = m.transform(ucs.origin)
expected_ux = m.transform(ucs.ux)
expected_uy = m.transform(ucs.uy)
expected_uz = m.transform(ucs.uz)
new = ucs.transform(m)
assert new.origin.isclose(expected_origin)
assert new.ux.isclose(expected_ux)
assert new.uy.isclose(expected_uy)
assert new.uz.isclose(expected_uz)
def test_none_cartesian():
ucs = UCS(ux=(1, 2), uy=(0, 2))
assert ucs.is_cartesian is False
def test_arbitrary_ucs():
origin = Vec3(3, 3, 3)
ux = Vec3(1, 2, 0)
def_point_in_xy_plane = Vec3(3, 10, 4)
uz = ux.cross(def_point_in_xy_plane - origin)
ucs = UCS(origin=origin, ux=ux, uz=uz)
m = Matrix44.ucs(ucs.ux, ucs.uy, ucs.uz, ucs.origin)
def_point_in_ucs = ucs.from_wcs(def_point_in_xy_plane)
assert ucs.ux == m.ux
assert ucs.uy == m.uy
assert ucs.uz == m.uz
assert ucs.origin == m.origin
assert def_point_in_ucs == m.ucs_vertex_from_wcs(def_point_in_xy_plane)
assert def_point_in_ucs.z == 0
assert ucs.to_wcs(def_point_in_ucs).isclose(def_point_in_xy_plane)
assert ucs.is_cartesian is True
def test_ucs_direction_to_ocs_direction():
ucs = UCS.from_x_axis_and_point_in_xy(
origin=(1, 2, 3), axis=(2, 3, 4), point=(3, 2, 5)
)
assert ucs.is_cartesian is True
expected = (-3.350073025395333, 2.9626020192591795, 6)
assert ucs.ucs_direction_to_ocs_direction(Vec3(2, 4, 6)).isclose(expected)
def test_to_ocs():
ucs = UCS(ux=(0, 0, -1), uz=(1, 0, 0))
assert ucs.is_cartesian is True
assert ucs.to_ocs((1, 0, 0)).isclose((0, -1, 0))
def test_points_to_ocs():
ucs = UCS(ux=(0, 0, -1), uz=(1, 0, 0))
points = [(1, 2, 3), (4, 5, 6), (9, 8, 7)]
expected = [ucs.to_ocs(p) for p in points]
result = list(ucs.points_to_ocs(points))
assert result == expected
def test_to_ocs_angle_deg():
ucs = UCS.from_x_axis_and_point_in_xy(
origin=(1, 2, 3), axis=(2, 3, 4), point=(3, 2, 5)
)
expected = 120.077450607124
assert isclose(ucs.to_ocs_angle_deg(45), expected)
def test_constructor_functions():
# does not check the math, because this would just duplicate the implementation code
origin = Vec3(3, 3, 3)
axis = Vec3(1, 0, -1)
def_point = Vec3(3, 10, 4)
ucs = UCS.from_x_axis_and_point_in_xy(origin, axis=axis, point=def_point)
assert ucs.is_cartesian
assert isclose(ucs.from_wcs(def_point).z, 0)
ucs = UCS.from_x_axis_and_point_in_xz(origin, axis=axis, point=def_point)
assert ucs.is_cartesian
assert isclose(ucs.from_wcs(def_point).y, 0)
ucs = UCS.from_y_axis_and_point_in_xy(origin, axis=axis, point=def_point)
assert ucs.is_cartesian
assert isclose(ucs.from_wcs(def_point).z, 0)
ucs = UCS.from_y_axis_and_point_in_yz(origin, axis=axis, point=def_point)
assert ucs.is_cartesian
assert isclose(ucs.from_wcs(def_point).x, 0)
ucs = UCS.from_z_axis_and_point_in_xz(origin, axis=axis, point=def_point)
assert ucs.is_cartesian
assert isclose(ucs.from_wcs(def_point).y, 0)
ucs = UCS.from_z_axis_and_point_in_yz(origin, axis=axis, point=def_point)
assert ucs.is_cartesian
assert isclose(ucs.from_wcs(def_point).x, 0)
def test_rotate_x_axis():
ucs = UCS().rotate((1, 0, 0), radians(90))
assert ucs.ux.isclose((1, 0, 0))
assert ucs.uy.isclose((0, 0, 1))
assert ucs.uz.isclose((0, -1, 0))
def test_rotate_y_axis():
ucs = UCS().rotate((0, 1, 0), radians(90))
assert ucs.ux.isclose((0, 0, -1))
assert ucs.uy.isclose((0, 1, 0))
assert ucs.uz.isclose((1, 0, 0))
def test_rotate_z_axis():
ucs = UCS().rotate((0, 0, 1), radians(90))
assert ucs.ux.isclose((0, 1, 0))
assert ucs.uy.isclose((-1, 0, 0))
assert ucs.uz.isclose((0, 0, 1))
def test_rotate_local_x():
ucs = UCS()
assert ucs.ux == (1, 0, 0) # WCS x-axis
assert ucs.uy == (0, 1, 0) # WCS y-axis
assert ucs.uz == (0, 0, 1) # WCS z-axis
ucs = ucs.rotate_local_x(pi / 2)
assert ucs.ux.isclose((1, 0, 0)) # WCS x-axis
assert ucs.uy.isclose((0, 0, 1)) # WCS z-axis
assert ucs.uz.isclose((0, -1, 0)) # WCS -y-axis
def test_rotate_local_y():
ucs = UCS()
assert ucs.ux == (1, 0, 0) # WCS x-axis
assert ucs.uy == (0, 1, 0) # WCS y-axis
assert ucs.uz == (0, 0, 1) # WCS z-axis
ucs = ucs.rotate_local_y(pi / 2)
assert ucs.ux.isclose((0, 0, -1)) # WCS -z-axis
assert ucs.uy.isclose((0, 1, 0)) # WCS y-axis
assert ucs.uz.isclose((1, 0, 0)) # WCS x-axis
def test_rotate_local_z():
ucs = UCS()
assert ucs.ux == (1, 0, 0) # WCS x-axis
assert ucs.uy == (0, 1, 0) # WCS y-axis
assert ucs.uz == (0, 0, 1) # WCS z-axis
ucs = ucs.rotate_local_z(pi / 2)
assert ucs.ux.isclose((0, 1, 0)) # WCS y-axis
assert ucs.uy.isclose((-1, 0, 0)) # WCS -x-axis
assert ucs.uz.isclose((0, 0, 1)) # WCS z-axis
def test_shift_ucs():
ucs = UCS()
ucs.shift((1, 2, 3))
assert ucs.origin == (1, 2, 3)
ucs.shift((1, 2, 3))
assert ucs.origin == (2, 4, 6)
def test_moveto():
ucs = UCS()
ucs.moveto((1, 2, 3))
assert ucs.origin == (1, 2, 3)
ucs.moveto((3, 2, 1))
assert ucs.origin == (3, 2, 1)
|