1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
# Copyright (c) 2020, Manfred Moitzi
# License: MIT License
import pytest
import math
from ezdxf.math import (
is_planar_face,
Vec3,
Vec2,
subdivide_face,
intersection_ray_ray_3d,
intersection_line_line_3d,
normal_vector_3p,
safe_normal_vector,
NULLVEC,
X_AXIS,
Y_AXIS,
Z_AXIS,
subdivide_ngons,
distance_point_line_3d,
best_fit_normal,
Matrix44,
BarycentricCoordinates,
linear_vertex_spacing,
is_vertex_order_ccw_3d,
)
from ezdxf.render.forms import square, circle
REGULAR_FACE = Vec3.list([(0, 0, 0), (1, 0, 1), (1, 1, 1), (0, 1, 0)])
IRREGULAR_FACE = Vec3.list([(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 0)])
REGULAR_FACE_WRONG_ORDER = Vec3.list([(0, 0, 0), (1, 1, 1), (1, 0, 1), (0, 1, 0)])
ONLY_COLINEAR_EDGES = Vec3.list([(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0)])
REGULAR_FACE_WITH_COLINEAR_EDGE = Vec3.list(
[(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (1.5, 2.0, 0)]
)
def test_face_count():
assert is_planar_face(REGULAR_FACE[:3]) is True
assert is_planar_face(REGULAR_FACE[:2]) is False
def test_regular_face():
assert is_planar_face(REGULAR_FACE) is True
def test_irregular_face():
assert is_planar_face(IRREGULAR_FACE) is False
def test_only_colinear_edges():
assert is_planar_face(ONLY_COLINEAR_EDGES) is False
def test_regular_face_with_colinear_edge():
assert is_planar_face(REGULAR_FACE) is True
def test_does_not_detect_wrong_order():
assert is_planar_face(REGULAR_FACE_WRONG_ORDER) is True
def test_subdivide_square_in_quads():
b = square(2)
result = list(subdivide_face(b, quads=True))
assert len(result) == 4
assert result[0] == ((0, 0), (1, 0), (1, 1), (0, 1))
def test_subdivide_square_in_triangles():
b = square(2)
result = list(subdivide_face(b, quads=False))
assert len(result) == 8
assert result[0] == ((0, 1), (0, 0), (1, 1))
assert result[1] == ((0, 0), (1, 0), (1, 1))
def test_subdivide_triangle():
t = Vec3.list([(0, 0), (2, 0), (1, 2)])
assert len(list(subdivide_face(t, quads=True))) == 3
assert len(list(subdivide_face(t, quads=False))) == 6
def test_subdivide_ngons():
hexagon = list(circle(6))
result = list(subdivide_ngons([hexagon]))
assert len(result) == 6
def test_subdivide_vec2_square_in_quads():
b = Vec2.list(square(2))
result = list(subdivide_face(b, quads=True))
assert len(result) == 4
assert result[0] == ((0, 0), (1, 0), (1, 1), (0, 1))
class TestIntersectionRayRay3d:
@pytest.fixture
def ray1(self):
return Vec3(0, 0, 0), Vec3(1, 0, 0)
@pytest.fixture
def ray2(self):
return Vec3(0, 0, 0), Vec3(0, 0, 1)
def test_parallel_rays_return_empty_tuple(self, ray1, ray2):
result = intersection_ray_ray_3d(ray1, ray1)
assert len(result) == 0
assert bool(result) is False
def test_intersecting_rays_return_one_tuple(self, ray1, ray2):
result = intersection_ray_ray_3d(ray1, ray2)
assert len(result) == 1
assert bool(result) is True
assert result == (Vec3(0, 0, 0),)
def test_not_intersecting_and_not_parallel_rays_return_two_tuple(self, ray1, ray2):
line3 = (Vec3(0, 0, 1), Vec3(0, 1, 1))
result = intersection_ray_ray_3d(ray1, line3)
assert len(result) == 2
assert bool(result) is True
# returns points of closest approach on each ray
assert Vec3(0, 0, 1) in result
assert Vec3(0, 0, 0) in result
def test_intersecting_rays(self):
ray1 = (Vec3(1, 0, 0), Vec3(1, 1, 0))
ray2 = (Vec3(0, 0.5, 0), Vec3(1, 0.5, 0))
result = intersection_ray_ray_3d(ray1, ray2)
assert len(result) == 1
def test_random_intersecting_rays(self):
for _ in range(5):
intersection_point = Vec3.random(5)
ray1 = (intersection_point, intersection_point + Vec3.random())
ray2 = (intersection_point, intersection_point - Vec3.random())
result = intersection_ray_ray_3d(ray1, ray2)
assert len(result) == 1
assert result[0].isclose(intersection_point)
class TestIntersectingLines3d:
@pytest.fixture
def line1(self):
return Vec3(0, 0, 0), Vec3(2, 0, 0)
@pytest.fixture
def line2(self):
return Vec3(1, -1, 0), Vec3(1, 1, 0)
@pytest.fixture
def line3(self):
return Vec3(3, -1, 0), Vec3(3, 1, 0)
@pytest.fixture
def line4(self):
return Vec3(2, -1, 0), Vec3(2, 1, 0)
def test_real_intersecting_lines(self, line1, line2):
assert intersection_line_line_3d(line1, line2, virtual=False).isclose((1, 0, 0))
def test_virtual_intersecting_lines(self, line1, line3):
assert intersection_line_line_3d(line1, line3, virtual=True).isclose((3, 0, 0))
def test_not_intersecting_lines(self, line1, line3):
assert intersection_line_line_3d(line1, line3, virtual=False) is None
def test_touching_lines_do_intersect(self, line1, line4):
assert intersection_line_line_3d(line1, line4, virtual=False).isclose((2, 0, 0))
@pytest.mark.parametrize(
"p2", [(4, 0), (0, 4), (4, 4)], ids=["horiz", "vert", "diag"]
)
def test_coincident_lines_do_not_intersect(self, p2):
line = (Vec3(), Vec3(p2))
assert intersection_line_line_3d(line, line, virtual=False) is None
RH_ORTHO = [
(NULLVEC, X_AXIS, Y_AXIS, Z_AXIS),
(NULLVEC, Y_AXIS, X_AXIS, -Z_AXIS),
(NULLVEC, Z_AXIS, X_AXIS, Y_AXIS),
(NULLVEC, X_AXIS, Z_AXIS, -Y_AXIS),
(NULLVEC, Y_AXIS, Z_AXIS, X_AXIS),
(NULLVEC, Z_AXIS, Y_AXIS, -X_AXIS),
]
@pytest.mark.parametrize("a,b,c,r", RH_ORTHO)
def test_normal_vector_for_3_points(a, b, c, r):
assert normal_vector_3p(a, b, c) == r
def test_safe_normal_vector_regular():
vertices = Vec3.list([(0, 0, 0), (1, 0, 0), (1, 1, 0)])
assert safe_normal_vector(vertices).isclose((0, 0, 1))
def test_safe_normal_vector_for_coincident_vertices():
vertices = Vec3.list([(0, 0, 0), (0, 0, 0), (1, 0, 0), (1, 1, 0)])
assert safe_normal_vector(vertices).isclose((0, 0, 1))
def test_safe_normal_vector_for_colinear_vertices():
vertices = Vec3.list([(0, 0, 0), (0.5, 0, 0), (1, 0, 0), (1, 1, 0)])
assert safe_normal_vector(vertices).isclose((0, 0, 1))
def test_safe_normal_vector_raises_exception_for_undefined_normal_vector():
vertices = Vec3.list([(0, 0, 0), (1, 0, 0), (2, 0, 0)])
with pytest.raises(ZeroDivisionError):
safe_normal_vector(vertices)
@pytest.mark.parametrize(
"points, expected",
[
([(10, 3), (0, 0), (1, 0)], 3), # left of line
([(-10, 0), (0, 0), (1, 0)], 0), # on line
([(2, -4), (0, 0), (1, 0)], 4), # right of line
([(5, 0), (0, 5), (0, 2)], 5),
([(1, 0, 1), (1, 1, 1), (0, 0, 0)], 0.8164965809277259),
],
)
def test_distance_point_line_3d(points, expected):
p, a, b = Vec3.generate(points)
assert distance_point_line_3d(p, a, b) == pytest.approx(expected)
@pytest.mark.parametrize("x", [1e-99, 1e-9, 0, 1e9, 1e99])
def test_distance_point_line_3d_no_line(x):
"""Start point is equal or close to end point."""
s = Vec3(1, 0, x)
e = Vec3(1, 0, x)
with pytest.raises(ZeroDivisionError):
distance_point_line_3d(Vec3(1, 0, 0), s, e)
class TestBestFitNormal:
@pytest.mark.parametrize("a,b,c,r", RH_ORTHO)
def test_if_returns_right_handed_normals(self, a, b, c, r):
assert best_fit_normal((a, b, c)) == r
@pytest.fixture(scope="class")
def vertices(self):
return Vec3.list([(0, 0), (3, 0), (3, 4), (4, 8), (1, 5), (0, 2)])
@pytest.fixture(scope="class")
def matrix(self):
return Matrix44.chain(
Matrix44.x_rotate(0.75),
Matrix44.translate(2, 3, 4),
)
def test_transformed_counter_clockwise_vertices_ccw(self, vertices, matrix):
v = matrix.transform_vertices(vertices)
normal = matrix.transform_direction(Z_AXIS)
assert best_fit_normal(v).isclose(normal)
def test_transformed_clockwise_vertices(self, vertices, matrix):
v = matrix.transform_vertices(reversed(vertices))
normal = matrix.transform_direction(-Z_AXIS)
assert best_fit_normal(v).isclose(normal)
class TestBarycentricCoords:
@pytest.fixture
def bc(self):
return BarycentricCoordinates((0, 0, 0), (5, 0, 0), (5, 4, 0))
def test_basic_coords(self, bc):
assert bc.from_cartesian(bc.a) == (1, 0, 0)
assert bc.from_cartesian(bc.b) == (0, 1, 0)
assert bc.from_cartesian(bc.c) == (0, 0, 1)
def test_center_of_mass_property(self, bc):
p = (bc.a + bc.b + bc.c) / 3
b = bc.from_cartesian(p)
assert b.isclose((1 / 3.0, 1 / 3.0, 1 / 3.0))
@pytest.mark.parametrize("p", [(0, 4, 0), (0, -1, 0), (7, 0, 0)])
def test_point_outside_triangle(self, bc, p):
p = Vec3(p)
b = bc.from_cartesian(p)
assert any(b0 < 0 for b0 in b) is True
assert sum(b) == pytest.approx(1.0)
assert p.isclose(bc.to_cartesian(b))
@pytest.mark.parametrize(
"p",
[
# tests the normal projection of p onto (a, b, c)
(4, 1, 0),
(4, 1, 1),
(4, 1, -1),
],
)
def test_point_inside_triangle(self, bc, p):
b = bc.from_cartesian(p)
assert all(0 <= b0 <= 1 for b0 in b) is True
assert sum(b) == pytest.approx(1.0)
class TestLinearVertexSpacing:
@pytest.mark.parametrize("count", [-1, 0, 1, 2, 3])
def test_returns_always_two_or_more_vertices(self, count):
assert len(linear_vertex_spacing(Vec3(), Vec3(1, 0), count)) >= 2
def test_works_if_start_is_equal_to_end(self):
assert len(linear_vertex_spacing(Vec3(), Vec3(), 5)) == 5
@pytest.mark.parametrize("count", [2, 3, 4, 5])
def test_correct_spacing_in_Q1(self, count):
x = count - 1
vertices = linear_vertex_spacing(Vec3(), Vec3(x, x, x), count)
assert len(vertices) == count
for x in range(count):
assert vertices[x].isclose((x, x, x))
@pytest.mark.parametrize("count", [2, 3, 4, 5])
def test_correct_spacing_in_Q3(self, count):
x = count - 1
vertices = linear_vertex_spacing(Vec3(), Vec3(-x, -x, -x), count)
assert len(vertices) == count
for x in range(count):
assert vertices[x].isclose((-x, -x, -x))
I_BEAM = Vec3.list(
[
(0, 0),
(3, 0),
(3, 1),
(2, 1),
(2, 2),
(3, 2),
(3, 3),
(0, 3),
(0, 2),
(1, 2),
(1, 1),
(0, 1),
]
)
class TestIsVertexOrderCCW:
def test_xy_plane(self):
assert is_vertex_order_ccw_3d(I_BEAM, Vec3(0, 0, 1)) is True
def test_xy_plane_inv(self):
assert is_vertex_order_ccw_3d(I_BEAM, Vec3(0, 0, -1)) is False
def test_yz_plane_up(self):
m = Matrix44.x_rotate(math.pi / 2)
vertices = list(m.transform_vertices(I_BEAM))
assert is_vertex_order_ccw_3d(vertices, Vec3(0, 1, 0)) is True
def test_yz_plane_inv(self):
m = Matrix44.x_rotate(math.pi / 2)
vertices = list(m.transform_vertices(I_BEAM))
assert is_vertex_order_ccw_3d(vertices, Vec3(0, -1, 0)) is False
def test_xz_plane_up(self):
m = Matrix44.y_rotate(math.pi / 2)
vertices = list(m.transform_vertices(I_BEAM))
assert is_vertex_order_ccw_3d(vertices, Vec3(1, 0, 0)) is True
def test_xz_plane_inv(self):
m = Matrix44.y_rotate(math.pi / 2)
vertices = list(m.transform_vertices(I_BEAM))
assert is_vertex_order_ccw_3d(vertices, Vec3(-1, 0, 0)) is False
def test_square_xy_plane(self):
square = Vec3.list([(0, 0), (1, 0), (1, 1), (0, 1)])
assert is_vertex_order_ccw_3d(square, Vec3(0, 0, 1)) is True
assert is_vertex_order_ccw_3d(square, Vec3(0, 0, -1)) is False
if __name__ == "__main__":
pytest.main([__file__])
|