1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
# Copyright (c) 2012-2024 Manfred Moitzi
# License: MIT License
import math
import pytest
import numpy as np
from ezdxf.math import Vec3, BSpline, close_vectors
from ezdxf.math.bspline import normalize_knots, subdivide_params
DEFPOINTS = [
(0.0, 0.0, 0.0),
(10.0, 20.0, 20.0),
(30.0, 10.0, 25.0),
(40.0, 10.0, 25.0),
(50.0, 0.0, 30.0),
]
PARAMS = list(np.linspace(0, 1, 21))
def test_is_clamped(weired_spline1):
spline = BSpline(DEFPOINTS, order=3)
assert spline.is_clamped is True
assert weired_spline1.is_clamped is False
@pytest.mark.parametrize(
"knots",
[
[0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0, 1.0],
[2.0, 2.0, 2.0, 2.0, 3.0, 6.0, 6.0, 6.0, 6.0],
],
)
def test_is_a_clamped_bspline(knots):
s = BSpline(
control_points=DEFPOINTS,
knots=knots,
order=4,
)
assert s.is_clamped is True
@pytest.mark.parametrize(
"knots",
[
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0],
[0.0, 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 8.0],
[0.0, 0.0, 0.0, 3.0, 4.0, 5.0, 8.0, 8.0, 8.0],
[0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0, 1.0000001],
[0.0, 0.0, 0.0, 0.0000001, 0.5, 1.0, 1.0, 1.0, 1.0],
],
ids=[
"no repetitive knot values",
"2 repetitive knot values",
"3 repetitive knot values",
"inaccuracy at the end",
"inaccuracy at the start",
],
)
def test_is_not_a_clamped_bspline(knots):
"""To be a clamped B-spline 4 repetitive knot values at the start and at
the end of the knot vector are required.
"""
s = BSpline(
control_points=DEFPOINTS,
knots=knots,
order=4,
)
assert s.is_clamped is False
def test_normalize_knots():
assert normalize_knots([0, 0.25, 0.5, 0.75, 1.0]) == [
0,
0.25,
0.5,
0.75,
1.0,
]
assert normalize_knots([0, 1, 2, 3, 4]) == [0, 0.25, 0.5, 0.75, 1.0]
assert normalize_knots([2, 3, 4, 5, 6]) == [0, 0.25, 0.5, 0.75, 1.0]
def test_normalize_knots_if_needed():
s = BSpline(
control_points=DEFPOINTS,
knots=[2, 2, 2, 2, 3, 6, 6, 6, 6],
order=4,
)
k = s.knots()
assert k[0] == 0.0
class TestInsertKnotNonRational:
@pytest.fixture
def spline(self):
s = BSpline(
[
(0, 0),
(10, 20),
(30, 10),
(40, 10),
(50, 0),
(60, 20),
(70, 50),
(80, 70),
]
)
t = s.max_t / 2
return s.insert_knot(t)
def test_knots(self, spline):
assert (
all(
math.isclose(k, e)
for k, e in zip(
spline.knots(),
(0.0, 0.0, 0.0, 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0),
)
)
is True
)
def test_control_points(self, spline):
assert (
all(
p.isclose(e)
for p, e in zip(
spline.control_points,
(
(0.0, 0.0, 0.0),
(10.0, 20.0, 0.0),
(30.0, 10.0, 0.0),
(38.333333333333336, 10.0, 0.0),
(45.0, 5.000000000000001, 0.0),
(51.66666666666667, 3.3333333333333326, 0.0),
(60.0, 20.0, 0.0),
(70.0, 50.0, 0.0),
(80.0, 70.0, 0.0),
),
)
)
is True
)
class TestInsertKnotRational:
@pytest.fixture
def spline(self):
s = BSpline(
[(0, 0), (0, 1), (1, 1)],
weights=[1, 1 / math.sqrt(2), 1],
order=3,
)
t = s.max_t / 2
return s.insert_knot(t)
def test_knots(self, spline):
assert (
all(
math.isclose(k, e)
for k, e in zip(
spline.knots(),
(0.0, 0.0, 0.0, 0.5, 1.0, 1.0, 1.0),
)
)
is True
)
def test_control_points(self, spline):
assert (
all(
p.isclose(e)
for p, e in zip(
spline.control_points,
(
(0.0, 0.0, 0.0),
(0.0, 0.41421356237309503, 0.0),
(0.585786437626905, 1.0, 0.0),
(1.0, 1.0, 0.0),
),
)
)
is True
)
def test_weights(self, spline):
assert (
all(
math.isclose(w, e)
for w, e in zip(
spline.weights(),
(1.0, 0.8535533905932737, 0.8535533905932737, 1.0),
)
)
is True
)
def test_transform_interface():
from ezdxf.math import Matrix44
spline = BSpline(control_points=[(1, 0, 0), (3, 3, 0), (6, 0, 1)], order=3)
new_spline = spline.transform(Matrix44.translate(1, 2, 3))
assert new_spline.control_points[0] == (2, 2, 3)
def test_bezier_decomposition():
bspline = BSpline.from_fit_points(
[
(0, 0),
(10, 20),
(30, 10),
(40, 10),
(50, 0),
(60, 20),
(70, 50),
(80, 70),
]
)
bezier_segments = list(bspline.bezier_decomposition())
assert len(bezier_segments) == 5
# results visually checked to be correct
assert close_vectors(
bezier_segments[0],
[
(0.0, 0.0, 0.0),
(2.02070813064438, 39.58989657555839, 0.0),
(14.645958536022286, 10.410103424441612, 0.0),
(30.0, 10.0, 0.0),
],
)
assert close_vectors(
bezier_segments[-1],
[
(60.0, 20.0, 0.0),
(66.33216513897267, 43.20202388489432, 0.0),
(69.54617236126121, 50.37880459351478, 0.0),
(80.0, 70.0, 0.0),
],
)
def test_cubic_bezier_approximation():
bspline = BSpline.from_fit_points(
[
(0, 0),
(10, 20),
(30, 10),
(40, 10),
(50, 0),
(60, 20),
(70, 50),
(80, 70),
]
)
bezier_segments = list(bspline.cubic_bezier_approximation(level=3))
assert len(bezier_segments) == 28
bezier_segments = list(bspline.cubic_bezier_approximation(segments=40))
assert len(bezier_segments) == 40
# The interpolation is based on cubic_bezier_interpolation()
# and therefore the interpolation result is not topic of this test.
def test_subdivide_params():
assert list(subdivide_params([0.0, 1.0])) == [0.0, 0.5, 1.0]
assert list(subdivide_params([0.0, 0.5, 1.0])) == [
0.0,
0.25,
0.5,
0.75,
1.0,
]
@pytest.fixture
def weired_spline1():
# test spline from: 'CADKitSamples\Tamiya TT-01.dxf'
control_points = [
(-52.08772752271847, 158.6939842216689, 0.0),
(-52.08681215879965, 158.5299954819766, 0.0),
(-52.10118023714384, 158.453369560292, 0.0),
(-52.15481567142786, 158.3191250853181, 0.0),
(-52.19398877522381, 158.2621809388646, 0.0),
(-52.28596439525645, 158.1780834350967, 0.0),
(-52.33953844794299, 158.1503467960972, 0.0),
(-52.44810872122953, 158.1300340044323, 0.0),
(-52.50421992306838, 158.1373171840982, 0.0),
(-52.6075289246734, 158.1865954546344, 0.0),
(-52.65514787710273, 158.2285032895921, 0.0),
(-52.73668761545541, 158.3403743627349, 0.0),
(-52.77007322118961, 158.4091709021843, 0.0),
(-52.82282063670695, 158.5633574927312, 0.0),
(-52.84192253131899, 158.6479284406054, 0.0),
(-52.86740213628708, 158.8193660227095, 0.0),
(-52.87386770841857, 158.9069288997418, 0.0),
(-52.87483030423064, 159.0684635170357, 0.0),
(-52.86932199691667, 159.1438624785262, 0.0),
(-52.84560704446005, 159.2697570380293, 0.0),
(-52.82725914916205, 159.3212520891559, 0.0),
(-52.75022655463125, 159.4318434990425, 0.0),
(-52.6670694478151, 159.4452110783386, 0.0),
(-52.51141458339235, 159.3709884860868, 0.0),
(-52.45531159130934, 159.3310594465107, 0.0),
(-52.34571913237574, 159.2278392570542, 0.0),
(-52.29163139562603, 159.1638425241462, 0.0),
(-52.19834244727945, 159.0217561474263, 0.0),
(-52.15835994602539, 158.9423430023927, 0.0),
(-52.10315233959036, 158.778742732499, 0.0),
(-52.08772752271847, 158.6939842216689, 0.0),
(-52.08681215879965, 158.5299954819766, 0.0),
]
knots = [
-0.0624999999999976,
-0.0624999999999976,
0.0,
0.0,
0.0624999999999998,
0.0624999999999998,
0.1249999999999997,
0.1249999999999997,
0.1874999999999996,
0.1874999999999996,
0.2499999999999994,
0.2499999999999994,
0.3124999999999992,
0.3124999999999992,
0.3749999999999991,
0.3749999999999991,
0.4374999999999989,
0.4374999999999989,
0.4999999999999988,
0.4999999999999988,
0.5624999999999987,
0.5624999999999987,
0.6249999999999984,
0.6249999999999984,
0.7500000000000099,
0.7500000000000099,
0.8125000000000074,
0.8125000000000074,
0.875000000000005,
0.875000000000005,
0.9375000000000024,
0.9375000000000024,
1.0,
1.0,
1.0625,
1.0625,
]
return BSpline(control_points, order=4, knots=knots)
def test_weired_closed_spline(weired_spline1):
# knots are normalized
assert weired_spline1.knots()[0] == 0
assert weired_spline1.max_t == 1.0
first = weired_spline1.point(0)
last = weired_spline1.point(weired_spline1.max_t)
assert (
first.isclose(last, abs_tol=1e-9) is False
), "The loaded SPLINE is not a correct closed B-spline."
for t, p in [
(0.0, Vec3(-52.08772752271847, 158.6939842216689, 0.0)),
(0.1, Vec3(-52.11342028962843, 158.42762802551263, 0.0)),
(0.2, Vec3(-52.32946275107123, 158.16060743164581, 0.0)),
(0.3, Vec3(-52.61574269538248, 158.1996048336622, 0.0)),
(0.4, Vec3(-52.81140581379403, 158.5333668544585, 0.0)),
(0.5, Vec3(-52.87434900632459, 158.9876962083887, 0.0)),
(0.6, Vec3(-52.81611529394961, 159.33426729288806, 0.0)),
(0.7, Vec3(-52.62299843370519, 159.41789638441713, 0.0)),
(0.8, Vec3(-52.335530988257595, 159.21191342347686, 0.0)),
(0.9, Vec3(-52.11567764442737, 158.81115356150667, 0.0)),
(1.0, Vec3(-52.13358634818519, 158.3800216821037, 0.0)),
]:
assert weired_spline1.point(t).isclose(p)
def test_bezier_decomposition_issue(weired_spline1):
assert weired_spline1.is_rational is False
assert weired_spline1.is_clamped is False
with pytest.raises(TypeError):
list(weired_spline1.bezier_decomposition())
# visually checked:
EXPECTED_FLATTENING = [
Vec3(0.0, 0.0, 0.0),
Vec3(0.1875, 1.5717773437500002, 0.0),
Vec3(0.28125, 2.1450805664062504, 0.0),
Vec3(0.375, 2.5898437500000004, 0.0),
Vec3(0.46874999999999994, 2.9159545898437504, 0.0),
Vec3(0.5625, 3.1333007812500004, 0.0),
Vec3(0.6562499999999999, 3.251770019531251, 0.0),
Vec3(0.7031249999999999, 3.277015686035157, 0.0),
Vec3(0.7499999999999999, 3.281250000000001, 0.0),
Vec3(0.8437499999999999, 3.231628417968751, 0.0),
Vec3(0.9374999999999999, 3.1127929687500013, 0.0),
Vec3(1.0312499999999998, 2.9346313476562513, 0.0),
Vec3(1.1249999999999998, 2.7070312500000013, 0.0),
Vec3(1.3124999999999998, 2.1430664062500013, 0.0),
Vec3(1.4999999999999998, 1.5000000000000018, 0.0),
Vec3(1.6874999999999998, 0.8569335937500013, 0.0),
Vec3(1.8749999999999996, 0.29296875000000133, 0.0),
Vec3(1.9687499999999996, 0.06536865234375133, 0.0),
Vec3(2.0624999999999996, -0.11279296874999867, 0.0),
Vec3(2.1562499999999996, -0.2316284179687489, 0.0),
Vec3(2.2499999999999996, -0.2812499999999989, 0.0),
Vec3(2.296875, -0.27701568603515514, 0.0),
Vec3(2.34375, -0.2517700195312489, 0.0),
Vec3(2.4375, -0.13330078124999956, 0.0),
Vec3(2.53125, 0.08404541015625044, 0.0),
Vec3(2.625, 0.41015625000000044, 0.0),
Vec3(2.71875, 0.8549194335937504, 0.0),
Vec3(2.8125, 1.4282226562500002, 0.0),
Vec3(3.0, 3.0, 0.0),
]
def test_flattening():
fitpoints = [(0, 0), (1, 3), (2, 0), (3, 3)]
bspline = BSpline.from_fit_points(fitpoints)
assert all(
a.isclose(b)
for a, b in zip(bspline.flattening(0.01, segments=4), EXPECTED_FLATTENING)
)
POINTS_ORDER_4 = [
Vec3(0.0, 0.0, 0.0),
Vec3(2.9975, 5.277500000000001, 5.49125),
Vec3(5.980000000000002, 9.220000000000002, 10.030000000000005),
Vec3(8.932499999999997, 11.9925, 13.713749999999997),
Vec3(11.840000000000003, 13.760000000000002, 16.64),
Vec3(14.6875, 14.6875, 18.90625),
Vec3(17.459999999999997, 14.939999999999998, 20.61),
Vec3(20.1425, 14.682500000000001, 21.84875),
Vec3(22.72, 14.079999999999998, 22.719999999999995),
Vec3(25.177500000000002, 13.297500000000003, 23.321250000000006),
Vec3(27.5, 12.5, 23.75),
Vec3(29.682500000000005, 11.8125, 24.09375),
Vec3(31.759999999999994, 11.2, 24.399999999999995),
Vec3(33.7775, 10.587499999999999, 24.70625),
Vec3(35.779999999999994, 9.9, 25.05),
Vec3(37.8125, 9.0625, 25.46875),
Vec3(39.92, 7.999999999999999, 26.0),
Vec3(42.147499999999994, 6.637500000000001, 26.68125),
Vec3(44.540000000000006, 4.8999999999999995, 27.550000000000004),
Vec3(47.1425, 2.712500000000002, 28.643749999999997),
Vec3(50.0, 0.0, 30.0),
]
DERIVATIVES_ORDER_4 = [
[Vec3(0.0, 0.0, 0.0), Vec3(60.0, 120.0, 120.0), Vec3(0.0, -600.0, -420.0)],
[
Vec3(2.9975, 5.277500000000001, 5.49125),
Vec3(59.85, 91.65, 99.975),
Vec3(-5.9999999999999964, -534.0000000000001, -381.0000000000001),
],
[
Vec3(5.980000000000002, 9.220000000000002, 10.030000000000005),
Vec3(59.400000000000006, 66.6, 81.9),
Vec3(-11.999999999999964, -468.0, -342.0),
],
[
Vec3(8.932499999999997, 11.9925, 13.713749999999997),
Vec3(58.64999999999999, 44.849999999999994, 65.77499999999999),
Vec3(-18.0, -402.0, -303.0),
],
[
Vec3(11.840000000000003, 13.760000000000002, 16.64),
Vec3(57.6, 26.4, 51.6),
Vec3(-24.0, -336.0, -264.0),
],
[
Vec3(14.6875, 14.6875, 18.90625),
Vec3(56.25, 11.25, 39.375),
Vec3(-30.0, -270.0, -225.0),
],
[
Vec3(17.459999999999997, 14.939999999999998, 20.61),
Vec3(54.599999999999994, -0.5999999999999943, 29.1),
Vec3(-36.0, -204.0, -186.0),
],
[
Vec3(20.1425, 14.682500000000001, 21.84875),
Vec3(52.65, -9.150000000000002, 20.775000000000002),
Vec3(-42.00000000000003, -138.0, -147.0),
],
[
Vec3(22.72, 14.079999999999998, 22.719999999999995),
Vec3(50.39999999999999, -14.399999999999999, 14.399999999999999),
Vec3(-47.99999999999997, -71.99999999999997, -107.99999999999999),
],
[
Vec3(25.177500000000002, 13.297500000000003, 23.321250000000006),
Vec3(47.85, -16.35, 9.975000000000001),
Vec3(-54.00000000000006, -5.999999999999993, -69.0),
],
[Vec3(27.5, 12.5, 23.75), Vec3(45.0, -15.0, 7.5), Vec3(-60.0, 60.0, -30.0)],
[
Vec3(29.682500000000005, 11.8125, 24.09375),
Vec3(42.45000000000001, -12.75, 6.374999999999999),
Vec3(-41.99999999999997, 29.99999999999998, -14.999999999999972),
],
[
Vec3(31.759999999999994, 11.2, 24.399999999999995),
Vec3(40.79999999999999, -12.0, 6.000000000000001),
Vec3(-24.0, 1.7763568394002505e-14, 0.0),
],
[
Vec3(33.7775, 10.587499999999999, 24.70625),
Vec3(40.050000000000004, -12.749999999999996, 6.375),
Vec3(-5.999999999999943, -30.000000000000014, 15.000000000000028),
],
[
Vec3(35.779999999999994, 9.9, 25.05),
Vec3(40.2, -14.999999999999998, 7.499999999999993),
Vec3(11.999999999999943, -59.99999999999998, 29.999999999999943),
],
[
Vec3(37.8125, 9.0625, 25.46875),
Vec3(41.25, -18.75, 9.375),
Vec3(30.0, -90.0, 45.0),
],
[
Vec3(39.92, 7.999999999999999, 26.0),
Vec3(43.2, -24.000000000000004, 11.999999999999993),
Vec3(48.000000000000114, -120.00000000000003, 60.00000000000006),
],
[
Vec3(42.147499999999994, 6.637500000000001, 26.68125),
Vec3(46.04999999999998, -30.75, 15.374999999999986),
Vec3(65.99999999999989, -150.0, 74.99999999999989),
],
[
Vec3(44.540000000000006, 4.8999999999999995, 27.550000000000004),
Vec3(49.80000000000001, -39.0, 19.5),
Vec3(84.00000000000011, -180.0, 90.00000000000011),
],
[
Vec3(47.1425, 2.712500000000002, 28.643749999999997),
Vec3(54.44999999999999, -48.74999999999999, 24.375),
Vec3(102.00000000000023, -209.99999999999994, 104.99999999999989),
],
[
Vec3(50.0, 0.0, 30.0),
Vec3(60.0, -60.0, 30.0),
Vec3(120.0, -240.0, 120.0),
],
]
POINTS_ORDER_3 = [
Vec3(0.0, 0.0, 0.0),
Vec3(3.0000000000000004, 5.437500000000001, 5.606250000000001),
Vec3(6.000000000000001, 9.75, 10.425),
Vec3(9.0, 12.937499999999998, 14.456249999999999),
Vec3(12.000000000000002, 15.000000000000002, 17.700000000000003),
Vec3(15.0, 15.937499999999998, 20.15625),
Vec3(18.0, 15.75, 21.825),
Vec3(20.9875, 14.5125, 22.74375),
Vec3(23.8, 13.199999999999998, 23.4),
Vec3(26.387500000000003, 12.1125, 23.943749999999998),
Vec3(28.749999999999996, 11.249999999999998, 24.374999999999996),
Vec3(30.8875, 10.612499999999997, 24.693749999999994),
Vec3(32.8, 10.2, 24.899999999999995),
Vec3(34.4875, 10.0125, 24.99375),
Vec3(36.05, 9.9, 25.05),
Vec3(37.8125, 9.375, 25.3125),
Vec3(39.800000000000004, 8.399999999999999, 25.799999999999997),
Vec3(42.0125, 6.975, 26.5125),
Vec3(44.45, 5.099999999999999, 27.450000000000003),
Vec3(47.112500000000004, 2.7750000000000026, 28.612499999999997),
Vec3(50.0, 0.0, 30.0),
]
POINTS_ORDER_2 = [
Vec3(0.0, 0.0, 0.0),
Vec3(2.0, 4.0, 4.0),
Vec3(4.0, 8.0, 8.0),
Vec3(6.0, 12.0, 12.0),
Vec3(8.0, 16.0, 16.0),
Vec3(10.0, 20.0, 20.0),
Vec3(13.999999999999998, 18.0, 21.0),
Vec3(17.999999999999996, 16.0, 22.0),
Vec3(22.000000000000004, 14.0, 23.0),
Vec3(26.0, 12.0, 24.0),
Vec3(30.0, 10.0, 25.0),
Vec3(32.0, 10.0, 25.0),
Vec3(34.0, 10.0, 25.0),
Vec3(36.0, 10.0, 25.0),
Vec3(38.0, 10.0, 25.0),
Vec3(40.0, 10.0, 25.0),
Vec3(42.0, 7.999999999999998, 26.0),
Vec3(44.0, 6.000000000000001, 27.0),
Vec3(46.0, 3.999999999999999, 28.0),
Vec3(48.0, 2.0000000000000018, 28.999999999999996),
Vec3(50.0, 0.0, 30.0),
]
@pytest.mark.parametrize(
"order,results",
[
[2, POINTS_ORDER_2],
[3, POINTS_ORDER_3],
[4, POINTS_ORDER_4],
],
ids=["degree=1", "degree=2", "degree=3"],
)
def test_bspline_point_calculation_to_pre_calculated_results(order, results):
spline = BSpline(DEFPOINTS, order=order)
for p, expected in zip(spline.points(PARAMS), results):
assert p.isclose(expected)
def test_bspline_derivative_calculation_to_pre_calculated_results():
spline = BSpline(DEFPOINTS, order=4)
for points, expected in zip(spline.derivatives(PARAMS, n=2), DERIVATIVES_ORDER_4):
for p, e in zip(points, expected):
assert p.isclose(e)
def test_bspline_point_calculation_against_derivative_calculation():
# point calculation and derivative calculation are not the same functions
# for optimization reasons. The derivatives() function returns the curve
# point and n derivatives, check if both functions return the
# same curve point:
spline = BSpline(DEFPOINTS, order=4)
curve_points = [p[0] for p in spline.derivatives(PARAMS, n=1)]
for p, expected in zip(curve_points, spline.points(PARAMS)):
assert p.isclose(expected)
def test_bezier_decomposition_issue_1261():
bspline = BSpline(
(
Vec3(138.7341842517817, 140.6329647855705, 3.9968e-12),
Vec3(137.8688179331311, 141.9813616807911, 4.4658e-12),
Vec3(133.4979383171521, 146.8141917003327, 4.7002e-12),
Vec3(117.801399951808, 150.5582827051759, 3.6238e-12),
Vec3(104.4582484561979, 147.3755444269566, 4.0679e-12),
Vec3(99.74073200372732, 144.6589073782108, 3.233e-12),
),
knots=(
0.0,
0.0,
0.0,
0.0,
0.149930310426686,
0.574965155213343,
1.0,
1.0,
1.0,
1.0,
),
)
result = list(bspline.bezier_decomposition())
expected = [
[
Vec3(138.7341842517817, 140.6329647855705, 3.9968e-12),
Vec3(137.8688179331311, 141.9813616807911, 4.4658e-12),
Vec3(136.7290491458935, 143.24159058075014, 4.526923121019351e-12),
Vec3(135.27281224889438, 144.31957761671416, 4.530024100563068e-12),
],
[
Vec3(135.27281224889438, 144.31957761671416, 4.530024100563068e-12),
Vec3(131.14455144741166, 147.3755444269546, 4.538815013856715e-12),
Vec3(124.47297569960983, 148.96691356606527, 4.081307506928357e-12),
Vec3(117.80139995180639, 148.96691356606576, 3.963578753464179e-12),
],
[
Vec3(117.80139995180639, 148.96691356606576, 3.963578753464179e-12),
Vec3(111.12982420400294, 148.96691356606624, 3.84585e-12),
Vec3(104.4582484561979, 147.3755444269566, 4.0679e-12),
Vec3(99.74073200372732, 144.6589073782108, 3.233e-12),
],
]
assert len(result) == len(expected)
for bez_res, bez_exp in zip(result, expected):
for vec3_res, vec3_exp in zip(bez_res, bez_exp):
assert vec3_res.isclose(vec3_exp)
|